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CHAPTER I. INTRODUCTION
1.0 Background

The basic operation of a radar is the transmission and reception
of electrical energy. The received signal or radar return is composed
of target, noise, jammer and/or clutter energy. For a ground-based air
defense radar, the target is an aircraft, missile, etc.; clutter is
ground, trees, rain or chaff; and jammers are electrical energy trans-
mission devices. Whereas proper radar design will reduce the effects
of clutter and jammers while enhancing the target, a signal processor
is normally required to provide target enhancement while rejecting
interference. Additional interference, i.e., thermal noise from system
electronic components, increases the total interference power which the
processor must reduce.

A typical quadrature channel radar digital signal processor is
shown in Figure 1. The mixers and the lowpass filters are used to
translate the intermediate frequency bandpass radar signal to in-phase
and quadrature channel baseband signals. After the signals are digi-
tized by the analog-to-digital converters, the clutter power is reduced
by clutter rejection filters, commonly referred to as moving target
indicators (MTI). Once the clutter power is reduced below the thermal

ncise level, the signal-to-noise (and/or jammer) ratio is improved by

some type of coherent integrator, for instance, a fast Fourier

transformer. With the clutter rejected and the signal-to-noise ratio

increased, the amplitude of each range/doppler cell is extracted.
These detected outputs are sent to a decision element.

i
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The function of the decision element is to produce an output or
target report only if a target is present, i.e., a detection. If no
target is present and an output is reported, this is a false alarm
which the decision element should minimize. Typically, the probability
of detection should be greater than 50 percent while the false alarm
rate, or probability of false alarm, would be between 10-3 and 10'9.

Basicallyv, the decision element compares a threshold (which is a
function of the system probability of false alarm requirement) to the
detector outputs. A target report is issued if the threshold is
exceeded.

If a fixed threshold decision element is used, the false alarm
rate is extremely sensitive to small changes in the average value of
the energy from all sources of interference. This sensitivity is
easily seen in Figure 2. If the threshold is set for a probability of
false alarm of 10'8, an incre;se of only 3 dB in total interference
power density corresponds to a 104 increase in the probability of false
alarm. This increase would put an unreasonable demand on the radar
data processor. Therefore, an adaptive threshold decision element is
required to provide acceptable target detectability while maintaining
a constant false alarm rate (CFAR).

The processing principles used to counteract the variations in the
output interference level are referred to as constant false alarm rate
(CFAR) or adaptive detection processing techniques. The most common
approach to the design of such CFAR processors is to sample the back-

ground interference in the time-and/or-frequency domain around the

current range and doppler cell, then utilize the samples to estimate

TN N GRS




4
the unknown statistical parameters of the interference. This estimate

is used to maintain a CFAR by control of the threshold level.
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Figure 2. False Alarm Probability for
Fixed Threshold Detection
) 1.1 Purpose
~‘ The purpose of this study is to compare the performance of two
j commonly known CFAR techniques, the cell averaging and the "greatest-
4 of." The performance comparison will be based on detection probabili-
} ties and false alarm probabilities obtained from a Monte Carlo simula-
4 tion of the two techniques. The performance of the processors will be
i
i determined for different target models, clutter environments, detector
. :
X laws, wordlengths, and interfering target power levels. The simulation 1
.”a will be utilized for verification of theoretical performance results
g
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and determination of performance results not obtainable by present
analytical methods.
1.2 Content

Chapter II reviews the theoretical analysis of a fixed threshold
processor. Probability density functions at the detector output are

derived for noise only and target plus noise for both a linear and a

square law detector. Two target models are used, a steady or nonfluc-
tuating target and a Swerling I target. The probability of false alarm
for each detector is determined by using the noise only probability
density functions. The probability of detection is determined for each
detector and a steady target, and for the square law detector and a /
Swerling I target.

Chapter III contains a theoretical analysis of three commonly
known adaptive threshold or CFAR techniques. The CFAR techniques are
cell averaging, "greatest-of," and log. Each technique is described
and various performance equations are derived or given. Probability
of false alarm and probability of detection equations are derived for
the cell averaging and "greatest-of" CFAR methods.

Chapter IV describes the Monte Carlo simulation developed for a
performance comparison of the cell averaging and the “greatest-of" CFAR

techniques. Mathematical models of the targets, noise and clutter are

given. Implementation of the two CFAR technjques is presented.
Finally, the determination of the probabilities of false alarm and {
probabilities of detection for both CFAR processors is discussed.

Chapter V presents a performance comparison of the two CFAR 1

processors based on the false alarm and detection probabilities obtained

from the Monte Carlo simulation. The comparisons include different




K detector laws, clutter environments, quantization wordlengths, and

; interfering target power levels.

Chapter VI contains the summary, conclusions, and recommendations

for future work.
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CHAPTER TII. FIXED THRESHOLD PERFORMANCE ANALYSIS
2.0 Introduction
The radar statistical detection problem in noise is one of choosing
between signal and noise at the radar processor output or noise alone;
that is, when the processor output voltage is described by v(t), one
wants to test per range cell between H, (noise alone) or H] (signal
plus noise) as follows:
H: v(t) = n(t)
Hy v(t) = s{t) + n(t) . (2.1)
The fixed threshold analysis assumes that the decision eiement is
preceded by a prewhitening or clutter rejection filter, such as an MTI.
The decision element in Figure 1 tests the processed video to
determine whether a signal is present (H]) or nct present (Ho). For a
specified voltage level or threshold, the decision element reports a
target if the amplitude of the video is greater than the threshold, and
reports no target if the video amplitude is less than the threshold.
It is possible that processed video which contains only noise can
exceed the threshold generating a false target report or false alarm.
By increasing the threshold the number of false alarms diminishes.

However, the chances of detecting a target é]so decrease. Consequently 1

the threshold setting is made as low as possible, consistent with a
tolerable false alarm rate with which the system can operate.
In a given system the fixed threshold would be determined by

establishing a tolerable false alarm rate based on overall system

!
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considerations. Having determined the threshold setting, the proba-
bility of detecting a desired target can be calculated.

This chapter will discuss the probability density functions (pdf)
at the output of the detector for both a square law and a linear
detector with noise only and signal plus noise inputs. The signal or
target models used were a nonfluctuating or steady target [1] and a
Swerling I target [2]. Expressions are given for the probability
of false alarm and the probability of detection associated with the
pdf.

2.1 Noise Only

This section gives the pdf and probability of false alarm
expressions for the single pulse amplitude detected noise only cases.
The detectors considered are the linear and square law detectors.

2.1.1 Linear Detector

A linear detector extracts the envelope of the video and is given

as

z = 1/x% + xg R o (2.2)

where X is the in-phase video, xQ is the quadrature video, and z is
the detector output.

If X and xQ are independent zero mean Gaussian random variables
and homogeneous, i.e., they have the same variance, 02, the pdf of

Z is

p(z) = 3% expf-zz/Zoz] . (2.3)
o

This pdf is the well known Rayleigh distribution.
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Assuming a fixed threshold, Zth’ the probability of false alarm is

PFA = f p(z)dz = f iz—exp[—ZZ/Zcz]dz R
Zth Zth ©

by a change of variables

w=z2 dw = 2zdz
_ 42
Wen = Ztn
then
*® 2 2
PFA = .4; El§-exp[-W/202]dw = exp[}zth/ZO ] . (2.4)
th <°

This equation can be used to determine a threshold given a desired

probability of false alarm, i.e.,
2%
Zyy, = [-In(PFA)20°T . (2.5)

2.1.2 Square Law Detector

A square law detector produces an output which is proportional to
the square of the video envelope and is given by

_ .2 2
y = xp+ Xq » (2.6)

where Xq is the in-phase video, xQ is the quadrature video, and y is
the detector output.

If Xy and xQ are independent zero mean Gaussian random variables
and homogeneous, i.e., they have the same variance, 02, the pdf of
y is

ply) = Elg-exp[-y/202] . (2.7)
(o}

The pdf is the well known exponential distribution.
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Assuming a fixed threshold, Yth’ the probability of false alarm is

, PFA = [m p(y)dy = exp[—Yth/Zoz] . (2.8)
. th
;2
This equation can be used to determine a threshold given a desired %
2 probability of false alarm, i.e., f
Yy, = [-In(PFA)26%] (2.9) .
2.2 Target Plus Noise
This section gives the pdf and probability of detection expressions
for the single pulse amplitude detected target plus noise cases. The /
target will be either a nonfluctuating or steady target or a Swerling I
target.
‘ At this point, it is desirable to discuss the definition of inter-
\ mediate frequency (IF) signal-to-noise ratio, x, commonly found in radar
. Titerature. The basic writings of Marcum [1], Swerling [2], and Rice [3]
t used the following:
- - Average Signal Power at IF _ jfL (2.10)
Average Noise Power at IF 202
where the received target is Pcos(2nft + 8) whose IF average power is :
, p2/2. i
'; For simplicity, it can be assumed that any quadrature channel é
fi- processing, such as a clutter rejection filter, will not affect the E
,E‘j signal-to-noise ratio. Hence the IF signal-to-noise ratio and the f
.% detector input signal-to-noise ratio are the same. %
.v; 2.2.1 Steady Target
j A steady target [1] is defined as a target where the signal-to-
f} noise ratio for one pulse describes the signal-to-noise ratio of any
;~§ pulse of a train under consideration. Hence, the pdf is
4 ,
H fé

w
¢




p(x) = plr26° , (2.11)

where P is the IF signal peak.

2.2.1.1 Linear Detector !

The pdf of a single steady target plus noise variate, z, after

linear detection is derived in Appendix A:
p(z) = 3%-exp[} 53—1533} I <5§> , (2.12)
o 20 o]

where P is the peak signal voltage prior to detection, 02 is again the :
same variance, and Io is the modified Bessel function of the first kind
of zero order [4]. ;

The probability of detection is given by

0 © 2 2
PD = f p(z)dz = f 52- exp[— 3—+2£—] I (%) dz . (2.13)
o

Zth Zth o] 20

This equation is of the form of a Q-function (4]

s}

2 .2
Q(b,c) = f a exp[— L—;—B—] 1 (ab)da (2.14)
C

and thus Equation (2.13) can be written as

PD = Q(b,c) , (2.15)

where b = P/o and ¢ = Zth/c.

2.2.1.2 Square Law Detector

The pdf of a single steady target plus noise variate, y, of a
square law amplitude detector is

p(y) =~?_]:2— exp[— X—J'-gﬁ] I (@) (2.16)

20

which is obtained from Equation (2.12) by a change of variables.
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The probability of detection for the square Taw detector is the
same as for the linear detector given in Equation (2.15), i.e.,
PD = Q(b,c) , (2.17)

where b = P/o and ¢ ='JYth/g'

2.2.2 Swerling I Target

A Swerling I target [2] is defined as samples which are correlated
within a pulse group but are independent on a scan-to-scan basis
(slowly fading). This case is applicable to many radar targets since
they tend not to be independent from pulse to pulse, but independent
from scan to scan due to target position change.

The pdf for a single sample signal-to-noise ratio, x, is

w{x,x) = —]: exp[— _x_] s (2.18)
X X

where X = p2/'202 is the average signal-to-noise ratio.

2.2.2.1 Linear Detector

The mathematical analysis of a Swerling I target plus noise and
a linear detector is difficult and no analysis was found in the
lTiterature.

£.2.2.2 Square Law Detector

The pdf for a single Swerling I target plus noise square law

detector output variate, y, is derived in Appendix A and is given as

1
= ———— exp|- —t— : 2.19
ply) ) exp[ ]U(y) (2.19)

20" (1+X)

The probability of detection is given by

[r——— [P ———— e - —— e - - ——
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<
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8
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x
o
!
N
Q
=
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x)
| S|
a
<

I

exp[—Yth/Zcz (1+;)] . (2.20)

Substituting Equation (2.8) yields

PD = PFA ! ¥ X | (2.21)

2.3 Conclusions

A fixed threshold decision element is normally used to specify
radar system performance. Due to the complex equations obtained when
a linear detector and/or a steady target is used, the performance will
normally be based on a Swerling I target model and a square law
detector. This assumption does not cause any significant problems.
The Swerling I target model is a realistic model for many radar targets
and the square law and linear detector have, as shown by Marcum [1],
essentially the same detection performance for a single pulse.

In an actual radar system, the use of a fixed threshold would
require having a priori knowledge of the thermal noise variance, 02,
to maintain a desired probability of false aiarm. For example, if

6

PFA = 107", then from Equation (2.8)

= _In(PFA)26° = 27.630° .

Y (2.22)

th
Hence Yth is a function of the input noise variance, 02. As shown in

Chapter I, the probability of false alarm is strongly affected by a

change in 02.
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Even if exact knowledge of the thermal noise were available, the
total system interference variance can change due to residual clutter
not cancelled by the prewhitening filter or jammers. Therefore, an
; . adaptive technique for determining the threshold is required. These
techniques are referred to as constant false alarm rate (CFAR)

processors or adaptive detection processors,

et T TT w—
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CHAPTER TII. ADAPTIVE THRESHOLD ANALYSIS
3.0 Introduction

This chapter reviews the theoretical analysis of three commonly
found CFAR processors: cell averaging, "greatest-of," and log.
Basically, these processors sample the background interference in the
time domain around a cell, i.e., a range cell of interest, and then
utilize the samples to estimate the unknown statistical parameters of
the interference. This estimate is used to determine a threshold for
the cell of interest.

The estimated threshold's probability density functions are given,
and equations for the probability of false alarm and probability of
detection are derived for the cell averaging and "greatest-of" CFAR
techniques. The analysis assumes a square Taw detector and a Swerling
I target for reasons stated in Chapter II.

Only a limited analysis of the log CFAR is presented due to a lack
of available analytical results. An egquivalence to the cell averaging
technique is discussed.

As in the fixed threshold analysis, the CFAR processor analysis
will be based on white Gaussian noise interference which is a result
of the prewhitening or clutter rejection filter.

3.1 Cell Averaging CFAR Analysis

This procedure (Figure 3) forms the threshold Yth by scaling the
average value of N square law detected reference cell outputs of the

quadrature channels, I and Q. i.e.,

15
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where the last summation results since it is equivalent to summing 2N
statistically independent, squared, zero mean Gaussian random variables
X1q* It is assumed that the referenced cells are homogeneous, i.e.,
each (xIQ)n has the same variance, 02. Consequently the distribution
for NYth/Ko2 will have a chi-square pdf with 2N degrees of freedom.
The pdf for Yth is obtained by changing variables on the chi-square
pdf [5]. Thus

N1
N Y
N 1 th 2
p(Y,) = (L) T (02> exp[-Yy W (2670 uttyy,) -
(3.2)

I———
Yo " Yo/¥Y1i

_ y(t)
ol SOI;JQTREECTI(-)‘;W —»>| TAPPED DELAY LINE

YTH
o000 |ovoo
Y_N/2Y v_1\71}v1 anzﬁ
2y,
] K
N

Figure 3. Block Diagram of a Conventional
Cell Averaging CFAR Processor

This equation can be used with the fixed threshold PFA of Equation
(2.8) to obtain the expected PFA when the cell averaging CFAR controls

the threshold, i.e.,
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oo

E{PFA) = fm exp [—Yth/202]p(Yth)dYth

PFACA

2¢° 70 20

Letting a = Yth/(Zoz) gives

N oo
— (N 1 N-1
PFACA = (R) WJ(‘) a exp[-a(N/K+])]da . (3.3)

Letting a = b/(N/K+1) yields

N ® N
s (Y1 b db
e = (%) e S expl-b] ==

N-i
0 /N )
(k-+] K

(%)N '(N_-]T)TW J: pN ! exp[-bJdb

g+

-N
SER N
PF CA = O + F) .

This allows the CFAR threshold constant, K, to be determined from

the desired average probability of false alarm, E?KbA’ i.e.,

( ] )]/N
K=N|[— -1] . (3.4)
PFACA

It is easily seen that the average probability of false alarm is
not dependent on the noise variance. Hence, the Gaussian noise level
does not have to be known to maintain CFAR. Nitzberg [6] called this
an unknown level CFAR, but it is commonly known as a range cell
averaging CFAR.

The expected value of the probability of detection ﬁﬁbA for the

Swerling I target can be determined by the same procedure, i.e.,

N N ] ] o 2 Yth N-1 )
(T{) N=-1)! “z‘f eXP[‘Yth/ZO ](——2—) EXp[-NYth/ZKor ]dYth .
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| PO, = E(PD} = fm PO p(Y,,)dY,,
=J' 0 [ Yy 262 (90| plv vy, (3.5)
PD., = |1 + )
CA ( N(1+x)
Substituting Equation (3.3) yields
CA — I/
x + PFAq,
where X is the average IF signal-to-noise ratio. %;
This result can be used to plot EﬁtA versus x with ??ﬁbA and N as
parameters. A typical curve is shown in Figure 4.

Figure 4. Performance Curves of
Swerling I Target with CFAR Window
Width as a Parameter (PFA A==10‘ )
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Since the fixed threshold performance curves are extensively
tabulated [7], a general cell averaging CFAR signal-to-noise loss curve

is desirable. The loss is given by the equation from Moore [8],

-R/N 1
log ——1—1;:32i~—
;CA + 10R/N
L = -10 log — (3.6)
: *cA N

where R corresponds to the exponential in the ﬁFﬁbA’ i.e., E?KbA =107k,

N is the number of reference cells, and ;bA is cell averaging signal-to-
noise ratio necessary to give the same PD at x for a fixed threshold

detector. This loss is shown in Figure 5.

7 j
SNR (dB)
6 - oo
12
5 6
3
0
] -
2"
-l
-
w 3+
[3]
z4 pFa = 10R
WINDOW SIZE (N)
1
oo T L 4 L L 4
0.2 0.4 0.6 0.8 10

CFAR PARAMETER (R/N)

Figure 5. Cell Avmraging CFAR Loss
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; 3.2 '"Greatest-0f" CFAR Analysis
In this method (Figure 6), the reference cells are divided into
. two subsets of size N/2. The cell averaging method is used to deter-
- mine a threshold for each of the reference cell subsets. One subset
is located before the reference cell of interest and the other after
the reference cell of interest. The "greatest-of" CFAR threshold is
» obtained by selecting the largest value from the two subset
' thresholds, i.e.,
i
Y] N #;%'N/z In i
‘ n=1 !
| 2 N/2 neqn
Yo = MAX [Y], Y2] . (3.7)

The G subscripts for "greatest-of" are used so that there is a

distinction from the cell averaging processor.

Yo my()/YG
¥
< y(t)
_ | SQUARE—LAW -
.m | —~—> ¥ DETECTOR TAPPED DELAY LINE
> j Yg
e S o900 [ X B N J
4 YoNs2) Y1 Y YN/2
’1 Kg Zy;
ot | N/2
- Yy 2
- “GREATEST- | |
' -: OFu
|
*
"y l
4
.: Figure 6. Block Diagram of a "Greatest-of" CFAR Processor
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Since Y] and Y2 are determined by the cell averaging method, then
NY]/(ZKGOZ) and NY2/(2KGUZ) are chi-square distributions with N degrees
of freedom. Consequently, the pdf for Y, (or Y2) can be obtained from
Equation (3.2).

By replacing Y with Y, (or Y2) and N with N/2, i.e., for Y,

Y N/2 -1

o)+ (4) 2y e ()
1 Ks / 252 (N2 - T\ 52

Papoulis [9] gives an expression for finding a pdf of the maximum of

" ] oy
exp -REE- U( -l).
(3.8)

two random variables, cf., Equation (7-15), p. 193,

2F 0Py

Pel¥g)

2Fy (Y )Ey(Yg) (3.9)
where the cumulative distribution function for Y1 and Y2 is represented
by F(-).

The average probability of false alarm for the "greatest-of" CFAR

is derived in Appendix A and is given by

2 PFR, N/2 -1 (n+§-1)!
PFAg = N/2 L n
(% - 1)!(1 + WP'Z/N> n=0 n!(] + WDZ/N)
(3.10)
where E?KP is called the prototype section PFA and is equal to
K -N/2
SET G
PFAP = (1 + N77) . (3.11)

Note that this is an expression for a cell averaging CFAR which uses

N/2 reference cells.
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It is possible to solve for KG in terms of PFAP as in Equation

(3.4) with N replaced by N/2, but K. is not easily related to PFAG

G
However, the results of Equation (3.10) can be plotted as shown in

Figure 7, then used to obtain the threshold constant. For example, if

6

it is desired to establish ﬁ?ib = 107" with N = 32, then from Figure 7,

5

5Fﬁb = 1.75 x 107°. Consequently, Kg is calculated to be 15.73 and

would be used in the Y] and Y2 determinations in order to establish

w— -6
PFAG =10 ~.
103
[L]
<
&
& WINDOW SIZE
Q (N/2)
-
[}
E
5
< 10%-
[+ o
© 16
8
4
10‘6 T 1) L
108 10° 104 103 102
PROTOTYPE PFAp

Figure 7. GO CFAR False Alarm Characteristics

Similar results derived in Appendix A hold for the probability of

detection

T kAt G
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D, - J: PD Pg(Y)dY,s
w3
(g__ 1)1(ﬁ + Fﬁb'z/N)N/z n=0 n!(1 + Fﬁb-Z/N)n (3.12)

where the prototype section 5ﬁb is
-N/2

N/2 f= . wer -2/N
2K X + PF
P = {1+ —2—) o . (3.13)
N(T + X) 1T+ x

This represents the performance of a cell averaging CFAR with N/2

O

reference cells. Once PFAP has been found (as from Figure 7), then 55;
can be calculated from Equation (3.13) and ﬁﬁé from Eguation (3.12).

It would be highly desirable to determine the signal-to-noise ratio

loss for the "greatest-of" CFAR as compared to the ideal fixed threshold.

Unfortunately, the complexity of Equation (3.12) prevents such an
analysis.

Analysis of the "greatest-of" CFAR has been pzrformed [8, 10, 11,
13]. One advantage of the "greatest-of" CFAR is discussed in References
8, 10, and 11, that is, the improved regulation of false alarms obtained
for range extended clutter when compared to a cell averaging CFAR.
Range extended clutter, discussed further in Chapters IV and V, is the
weather or chaff clutter not rejected by the ciutter filter and occupy-
ing some of the CFAR reference cells.

3.3 Log CFAR Analysis

This system (Figure 8) forms an estimate for the threshold as

N AN
.=k Ty YNkl y. (3.14)
T iy d
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An equivalent method, Figure 9, for processing is to use a log
detector at the input such that
N
log V; = > v 109 y; + log K (3.15)
3=t )

is formed and log Yo is compared to this threshold.
The expected value of the estimate is determined to be
N
- INW L2 (1_ )
E{VT} = K(E[yj ]) = ZKOj[I' TR (3.16)
The gamma function will become approximately equal to 1 for large
N since T(1)=1. Thus the expected value of the threshold will become

LIM E{v

N+ o

N
4= Lm 2Ko§[r(;7+ 1)] - 2Kc§ (3.17)
N+

which is equal to 2Ko§ for homogeneous noise. Therefore a reasonable
estimate can be formed‘by using the log CFAR algorithm.

Whereas a detai]éd mathematical analysis has not been performed,
Hansen and Ward [12] have performed a Monte Carlo analysis of the log
CFAR. Nitzberg [6], concerning a similar algorithm called the
geometric-mean CFAR, has determined the probability of detection when
an assumption is made about the noise distribution in the auxiliary
cells, viz., the geometric-mean assumption.

In comparing the 1og CFAR and the cell averaging CFAR, Hansen and
Ward [12] have proposed an empirically determined formula for the
relationship between the number of reference samples required by the
two detectors in order for their CFAR losses to be identical:

- 0.65 . (3.18)

N =1.65N

log CA

The main advantage of the log CFAR is the increased dynamic range

available due to the log detector.

T TR T e

e . i s A& . ‘asd W

v JoRh




[
- 25
K
!
yo .
! P i § m—
=/ y
| v
T
- SQUARE-LAW | Y{t)
r —1 > DETECTOR »] TAPPED DELAY LINE
Vr
o000 0000
YonY Yl YYe YNs2
1Y
> Ny
,)
/i
Figure 8. Block Diagram of Cell Averaging
Log/CFAR Processor
LOGy, + FAaNTIZ T H
. § o L LOG J'—P

ylt) LOG o
=1  DETECTOR —1 TAPPED DELAY LINE

LOG Vy

&.... ([ X X I )
Y W1 YN

Zy;

Y_N/2Y

Figure 9. Equivalent Block Diagram of Cell Averaging
Log/CFAR Processor

e T -
[ 4

antap) .

”~w
Y §

ad




26
3.4 Summary

The cell averaging CFAR has been utilized extensively in radar
signal processors due to its capability in homogeneous noise and its
well understood and analyzed performance.

The 1oy CFAR is simply a cell averaging CFAR following a log
detector which provides performance equivalent to the cell averaging
CFAR if the number of cells is sufficient. The log CFAR has been used
extensively due to its dynamic range capability.

The "greatest-of" CFAR has not been used extensively, due partly
to the original belief that it had approximately a 1 dB loss over the
cell averaging CFAR, e.g., Hansen [10]. Recent work by Moore [8],
Moore and Lawrence [11] and Hansen and Sawyer [13] has shown only a
0.2 dB difference in the two processors. Hence, the "greatest-of"
CFAR, whose main advantage is the improved false alarm regulation in
extended clutter [8, 11] should have increased utilization in radar

processors.
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CHAPTER IV. DESCRIPTION OF SIMULATION
4.0 Introduction
The cell averaging CFAR and the "greatest-of" CFAR are two commonly

used techniques. Analysis of the cell averaging CFAR has been exten-

sively performed [10, 14-16], but only Timited analysis of the "greatest-
of" CFAR has been performed [8, 11, 13]. j
The main thrust of this study is to determine the performance of ]
the two CFAR processors by development of a simulation and utilization |
of Monte Carlo techniques. The per%oé&énce rééu?tswobtained are used to
l compare the two techniques. This chapter gives a description of the

simulation.

i 4.1 Simulation Description

A block diagram of the simulation is shown in Figure 10. ;

INPUT !,{ DETECTOR PD
° SE 2
® CLUTTER e 12402 | | "AVERAGING|—p PFA

GREATEST-
OF

e TARGETS | Q.| & V|2,q2 CALCULATION

s Figure 10. Block Diagram of CFAR Simulation

T First, synthetic video composed of a combination of targét: noise -

,;: and clutter is generated for a quadrature channel proces-or. The '
: i
1 amplitude is extracted by an exact square law or linear detector. The |

S |

detected output is compared against a threshold determined by either a

cell averaging CFAR or a "greatest-of" CFAR using other detected

outputs.
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If the detector output exceeds the threshold, a target detection
is reported. If the output is interference only, this is a false
alarm; if the output contains signal, this is a detection. A detection
¥ and false alarm count are maintained for both processors. Finally,
after a number of Monte Carlo trials the detection and false alarm
counts are used to calculate a probability of detection and a proba-
bility of false alarm for each processor.

4.2 Synthetic Video

This section discusses the target models, noise, and clutter used
in the simulation.

4.2.1 Target Models

t Two target models were used in the simulation: a steady or non-
fluctuating target [1] and a Swerling I target [2].
The steady target is defined as a target where the signal-to-noise
ratio for one pulse describes the signal-to-noise ratio of any pulse of
a train under consideration. A steady target is modeled in the I and

Q channels by

S; = Pcos(8) |
-l Sq = Psin(e) (4.1)
‘?i where P is the IF peak signal voltage and 9 is a uniformly distributed
};’ random phase angle. ]
"% A Swerling I target is defined as samples which are correiated
; within a pulse train but are independent on a scan-to-scan basis
; (slowly fading). This case is applicable to many radar targets, since
:?: they tend not to be independent from pulse to pulse, but due to target
"1 position change, independent from scan to scan. The probability

density function for one sample, x, is
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wix,x) = 1 exp[} %%] (4.2)

X X
where X = ;?}202 is the average signal-to-noise ratio. Since the power
distribution of a Swerling I target is the well known exponential, then
the amplitude distribution is Rayleigh and the Swerling I target models

in the I and Q channels are given by

S P ~21hﬁ; cos(2nu2)

I
Q

where Uy and u, are independent uniformly distributed variates from

S (4.3)

"

p ~2]ﬁﬁ}‘sin(2ru2)
0 to 1.
4.2.2 Noise Model

The system noise will be zero mean Gaussian noise whose pdf is

given by

p(v) = ! exp[~v2/202] (4.4)

2no

where 02 is the variance.

There is a procedure for generating uncorrelated Gaussian samples
called the direct method [17]. In this procedure, pairs of independent
samples (u1, “2) are drawn from a uniform distribution (0 to 1), then

transformed as

2 =-«-21nu] cos(2wu2)
Vo =‘/~21nu2 sin(2nu2) (4.5)
where Vys v, are the uncorrelated samples of the Gaussian distribution.

From Equation {4.5), uy and u, may be expressed as functions of Yy

and Vo
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( 2 2
_ A
Uy = exp >

1 V2 (4.6)
u2 = ?Fvarc tan VT . .

The independence of vy and v, can be shown as follows:

p] (V], V2) = p2 (U], uz)l‘]l (4-7)
where |J| = absolute value of the Jacobian of the transformation, but,

since p, (uy, uy) = p (ug) pluy) =1,

Py (vys vy) = [J] (4.8)
where
| oy duy
\ IJ, = g_éu_]ﬁg_;. = dv] de (4.9)
V1°¥2 du, du,
: dv] dv2
and
()] L 6D
(Ve vs) = Xy EXplt T | X &XPT T
P1iV¥10Y2 (4.10)
. 1 1 1 1
- - 2m v2 Vo 2n vg ]
S 1+ 2 )£ 14+ L
. 2 v ;2 (Vl)
1 1 1
f‘j The above expression reduces to
~"‘
3 ( ) o) "12 ! "g 1 "12 1 "g
; Dy(Vy,V = 35— expl- = expl|- - — expl- -
_; ] ] 2 2 2 ‘/?F ? ‘/?; 2
: (4.11)
A - -
‘: Hence, Vi and v, are independent Gaussian variables.
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The variance of Vi and Vo is
2 _ 7 _
V] - V2 - ] . (4.]3)
Hence, the Gaussian noise is modeled in the I and Q channels as
N] = ovy
NQ = oV, (4.14)

where vy and v, are defined in Equation (4.5) and o is the standard
deviation in each channel and at IF.

4.2.3 Clutter Models

Two clutter models were included in the simulation: nonhomogeneous
interference and Weibull [18] distributed clutter.

The nonhomogeneous interference is clutter where the power density
varies as a function of range, i.e., chaff or weather clutter which is
distributed in range. The clutter power appears as a step function

with a clutter edge [14] as shown in Figure 11.

I
o I
I
I

CLUTTER POWER

CELL UNDER N RANGE
TEST

Figure 11. Clutter Edge Model

The clutter is assumed to be Gaussian in each range cell and the
clutter powers in the N CFAR reference cells are related by a ratio

T_ such that
n

2
cn
T,= s n=1,2, ... N (4.15)
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where az is the clutter power in the cell of interest and oi is the
clutter power in the Pih reference cell.

In Reference 18, Boothe has shown that the spatial distribution of
the ground clutter backscatter coefficient, o®, for various types of

terrain fit quite well with a Weibull pdf. The Weibull pdf is given by

b-1 b
p(c0) = b(oig exp[} (OZ)_] (4.16)

where b = 1/A (A = Weibull slope parameter) and

(2)"

2 = (4.17)

where cg = median value of Weibull pdf. Typical values of the clutter

siope parameter (A) and median backscatter coefficient (o;) are given
in Reference 18.

A single Weibull sample, o°, can be generated by

0
O = _m ; C-In(u) TP (4.18)
(1n2)

where u is a uniformly distributed random variate. Due to the quadra-
ture channel processing, two independent Weibull samples, 0? and 08,

must be generated.

Hence, the Weibull pdf is given in the I and Q channels as

o

o o A
of = (1nZ)A [-ln(u])] cos(2mu,)
0
o A .
oq (1n2)A [-1n(u)]" sin(2mu,) (4.19)

where Uy and u, are independent samples drawn from a uniform distribu-

tion (0,1).
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4.3 Detector Laws
The square law detector output is given by
y= 1%+ Q2 f (4.20)

o

where I and Q are the video in the in-phase and quadrature channels,
i.e., signal plus interference, respectively.

The linear detector output is given by

, - ‘/12 v 00 (4.21)

where I and Q are as above.

4.4 CFAR Processors

Two constant false alarm rate processors are modeled in the
simulation.

4.4.1 Cell Averaging CFAR

The cell averaging ZFAR will form a threshold Yth by scaling the
average value of N detected reference cell outputs of the quadrature

channels, ij.e.,
Y (4.22)

where the yn's are the detector outputs, n is the reference cell index
and K i5 the scaling constant. The actual model is implemented as
shown in Figure 3, that is,
K -N/2 N/2
Yeh = N 2: A + ¥ Yy (4.23)
n=1
where Yo the cell of interest, is not included in the threshold

determination.

g TTRMETTE T A e s e
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= 4.4.2 "Greatest-Of" CFAR

The "greatest-of" CFAR will form a threshold Y. by using the cell

G
averaging CFAR processor on two sets of N/2 detected reference cell

outputs and will select the largest value obtained. The "greatest-of"
processor is simulated as ]

K. =N/2

G
Y, T 555 y
1 N/2 n};] n
kg N/2 .20 !
Yo = 575 Yy 4.24 /'
2 N/2 gg] n
and
( YG = MAX [Y], Y2]

! where KG is the "greatest-of" scaling constant. Again Yoo the cell of

' interest, is not included in the threshold determination.

4.5 PFA and PD Determinations

The probabilities of false alarm are determined from detector
outputs which contain noise and/or interference only. A threshold for
the cell of interest is calculated b, the cell averaging CFAR processor
using other detector outputs. The magnitude of the cell of interest

. is compared to the threshold and, if it is larger, a false alarm is

reported. In the simulation, a false alarm counter (FAC) is initial-

ized to zero at the beginning of a Monte Carlo sequence, then FAC is
incremented by one for each false alarm reported. Finally, the
average probability of false alarm is determined as

PFA.. = TAC
PFACA = NWGW (4.25)

‘e
¥ 3 DA FONP G NV

3 TP W

where NMON is the number of Monte Carlo trials. The average probability

of false alarm, FAG. for the "greatest-of" CFAR is determined by the

same procedure.
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The probabilities of detection are determined from detector outputs
which contain targets. The same procedure is used as in the PFA deter-
mination; however, a target detection counter (TDC) is incremented for
each threshold that is exceeded by the magnitude of the cell of interest
in which a target resides. Then the average probability of detection

is determined as

57 . J1DC
PDCA = NMON - (4.26)

The average probability of detection, ﬁﬁé, for the "greatest-of"
is determined in a similar manner. /
4.6 Summary

A simulation has been developed which can be used to determine
the cell averaging CFAR and “"greatest-of" CFAR performance for different
environmental conditions, targets and detectors. The probability of !
false alarm and the probability of detection results obtained can be
used to verify the theoretical performance equations and to compare the

relative performance of the two processors.




CHAPTER V. RESULTS
5.0 Introduction

The simulation described in Chapter IV was developed to compare

the performance of the cell averaging and "greatest-of" CFAR processors.

The utilization of a simulation allows determination of the processors'
performance for the different targets, detectors and clutter environ-
ments simulated. The probabilities of false alarm and probabilities of
detection are the basis for comparing the two CFAR processors. The
desired probability of false alarm in radars is normally quite small,

3 to 10'9

i.e., 107 . Thus, it is difficult to verify the probability

of false alarm using a computer simulation due to the amount of
computer time required to complete a sufficient number of Monte Carlo
passes, i.e., 105 or more. This difficulty was overcome by programming
the simulation on an array processor. The array processor is a high
speed arithmetic unit designed for scientific applications. A brief
discussion of the array processor is given in Appendix D.

5.1 Probability of False Alarm Results

To compare the two CFAR techniques it is necessary to design them

to maintain the same average probability of false alarm in homogeneous

noise, i.e., PFAG = PFACA'

For the cell averaging CFAR it is only required to specify the
desired average probability of false alarm, ﬁfﬁtA, and the number of
reference cells N, and by using Equation (3.4) to determine the

threshold constant K.

36
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For the "greatest-of" CFAR the design procedure is somewhat
( complicated. The threshold constant K. is determined by a computer
B program which iterates 5?Kb in Equation (3.10) until the desired value
for the EFKG is obtained. Then this value of PFA, and the number of

p
reference cells N is used in Equation (3.11) to determine KG'

Hence, theoretically ﬁfﬁbA = EFKG for the same number of reference

cells in homogeneous noise.

3 4 5

The design probabilities of false alarm of 107>, 10" ', and 10~

were chosen because they are commonly found values and because the

Gaussian random number generator lacks distribution tails necessary for

a false alarm rate <10'5.

The CFAR window widths N were chosen to be
8, 16, and 32, since digital hardware is normally implemented in powers
t of two. The probabilities of false alarm for the cell averaging and

\ "greatest-of" CFAR obtained by the Monte Carlo simulation are given in

. Table 1.
Table 1. CFAR Processor Probabilities of False Alarm

PFAD N PFACA PFAP FAG
-3 8 0.113-2 0.877-2 0.106-2
10 16 0.110-2 0.507-2 0.107-2
32 0.104-2 0.318-2 0.103-2
S -4 8 0.121-3 0.223-2 0.123-3
10 16 0.104-3 0.104-2 0.110-3
32 0.110-3 0.532-3 0.124-3
-5 8 0.106-4 0.599-3 0.770-5
10 16 0.134-4 0.230-3 0.144-4
32 0.115-4 0.940-4 0.115-4

The number of Monte Carlo runs used to determine the results in

Table 1 were 105, 106, and 107 for the probabilities of false alarm

o hamne aaathinh, WDE Saaes """‘" T T T e
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10 %, 10 7, and 10 >, respectively. The number of Monte Carlo runs
required to give a priori probabilities PFA and PD for a specified
range of the estimated parameters is calculated in Appendix C.

5.2 Probability of Detection Results

The performance curves in Figures 12 through 23 were determined by
the Monte Carlo simulation. The curves are plotted as probability of
detection versus input signal-to-noise ratio. The cell averaging CFAR
performance curves are given in Figures 12 through 14 for a steady
target and in Figures 15 through 17 for a Swerling I target. A square
Taw detector is used. The "greatest-of" CFAR performance curves are
given in Figures 18 through 20 for a steady target and in Figures 21
through 23 for a Swerling I target. Again, a square law detector is

used.

3 .4

The design false alarm probabilities of 1077, 10, and 107> are
shown on the plots while the actual average false alarm probabilities
are given in Table 1.

The theoretical probability of detection equations have been
determined for the cell averaging CFAR with a steady target and a
Swerling I target and for the "greatest-of" CFAR with a Swerling I
target only. These equations are shown below.

The theoretical PD for a square law detected steady target and

cell averaging CFAR is derived in Reference 14 and is given as

2 N-1 2 2 m
Pp<1 - -0 expl- a%/(g *2”( 2 )L . (5.1)
71 ! Z. ) Wl

where g = K+/2/N is the input signal-to-noise ratio, e = a2g2/[2(gz4-2)]

and Lm(e) are Laguerre polynomials with the properties

L (e) =1, Ll(e) = 1+e, Lm+](e) = (e+-2m+-l)Lm(e)-msz_](e).
(5.2)
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The theoretical PD for a square law detected Swerling I target

using cell averaging CFAR is given in Equation (3.5) and repeated here.

P, [1 K ]-N (5.3)
= + ——— .
CA N(T+X)

where N is number of reference cells, x is the input signal-to-noise-
ratio, and K js the threshold constant.
The theoretical PD for a square law detected Swerling I target and

"greatest-of" CFAR is given in Equation (3.12) and repeated here.

_ 2P n2-1 (n+ 1)
P T — 2N\ 42 2"
(é-- 1) !(1 + PD,, ) nt (1 + 79,72/N)
(5.4)
where the prototype ﬁﬁp is
ok 12
7D, = [] + ____ﬁzf] (5.5)
N(T+x)

where N is the number of reference cells and KG is the "greatest-of"
threshold constant.

The probability of detection curves for an ideal threshold, i.e.,
a fixed threshold system where the noise power is known, are given in
Meyer and Mayer [7]. Ideal threshold curves are plotted in Figures 12,
15, 18, and 21. The curveson Figures 12 and 18 were extracted from
page 126 of Reference 7, while the curves on Figures 15 and 21 were
extracted from page 218 of Reference 7. For the Swerling I target
results the curve could be generated using Equation (2.20).

5.3 Probability of Detection Comparison

The performance curves, Figures 24 through 29, provide a compari-

son of the cell averaging and "greatest-of" CFAR probabilities of

detection. They are replots of Figures 17 through 28 where the cell
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1 58
averaging and "greatest-of"” CFAR probabilities of detection curves are
combined for a particular design probability of false alarm and target
model. The actual probabilities of false alarm are given in Table 1.
It can be seen that the cell averaging CFAR has better detection

performance in homogeneous noise than the "greatest-of" CFAR. For the

target model of greater interest, i.e., the Swerling I target, the
detection performance of the two processors is almost equivalent.
Since the Monte Carlo simulation determines probabilities of detec-
tion, a more meaningful comparison could be made using signal-to-noise
ratios. Using Equation (3.5), the input signal-to-noise ratio for the ;

cell averaging CFAR and a Swerling 1 target is

N
1 - Vpo, PRR, "N
= (5.6)

X
CA Nf—

( JLDCA -

' where N is the number of reference cells, ?FKtA

| bility of false alarm, and ﬁﬁtA

Hence, given an average probability of detection, average probability

is the average proba-

is the average probability of detection.

of false alarm, and CFAR window width, the input signal-to-noise ratio
for the cell averaging CFAR can be determined.

To compare the two CFAR technigues, an average signal-to-ngise

Mg difference AdB was calculated as follows. For a particular ﬁ?KD, i.e.,

4 1073, 1074, or 1072, CFAR window width N, i.e., 8, 16, or 32, and |

_:i the Monte Carlo determined PD's, i.e., ﬁﬁtA or PD., the corresponding 1
; cell averaging CFAR input signal-to-noise ratio for both CFAR tech-

. 3 4

niques was determined using Equation (5.6). That is, the input o

signal-to-noise ratio xCA(j) for the cell averaging is calculated as
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Nfow 7.y ==+ =1/N
. 1 - ‘/PDCA(J) PFAD
Reald) = —— (5.7)
PDCA(J) -1
and the input SNR, ié(j), for the "greatest-of" is calculated as
B 1 - Vo) pray N
xg(3) = (5.8)
VB, () - 1

where j is an index for the 21 Monte Carlo obtained probabilities of

detection corresponding to each of the 21 input signal-to-noise ratios,

j.e., from 0 dB to 20 dB in increments of 1 dB. i
After converting ibA(j) and ié(j) to decibels, an average signal-

to-noise difference is calculated as

— 21 Xpa(3) - xg(3)
ndg = L A8
3=1

(5.9)

The results, given in Table 2, indicate a range of average signal-
to-noise differences for the Swerling I target as 0.115 dB to 0.215 dB.
These results are comparable to analytical results of [8] and [13].

Table 2. Signal-to-Noise Ratio Comparison of Cell
Averaging and "Greatest-0f" CFAR Processors

PFA, N AdB
_3 8 0.206
10 16 0.175 4
32 0.115 4
A 8 0.215 :
10” 16 0.190 |
32 0.142
5 8 0.192
107 16 0.205
32 0.150

P L, % TR o,
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{ 5.4 Detector Law Performance Comparison

' The recent introduction of digital technology to radar signal
processing has necessitated the use of linear detectors for amplitude
extraction. This is a result of the bit growth associated with a

- squaring function, i.e., for B bit input the output requires 2-B bits.

It is further noted that an exact linear detector is the square

root of a square law detector. Hence, the actual detector used is an

approximation to the exact linear detector. A number of these algo-
rithms have been designed and normally take advantage of the divide by
two which results from right shifts of digital words. Two commonly

found algorithms are

R

Max (111,1e]) + 3 Mv (11],]a]) (5.10)
and

R

MAX (J11.1Q1) + 7 MIN ([1,af) (5.11)

where R is detector output and |I| and |Q| are the absolute values of
the in-phase and quadrature inputs. Since there are a number of
detector approximation algorithms, no processor analysis is performed
using these algorithms.

The performance curves given in Figures 30 through 37 were
obtained for the cell averaging and "greatest-of" CFAR processors
using exact square law and linear detection. Again the probabilities
of detection obtained by the Monte Carlo simulation are plotted versus

the input signal-to-noise ratio. The results obtained for a particular

CFAR technique and both detectors are plotted together,

S e "
),

, It can be seen that the performance of the square law detector is
l
fq superior to that of the linear detector for any combination of target
20 |

by of

il fotns,
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model, average probability of false alarm and window width, for either

‘ CFAR technique. For the target of greatest interest, i.e., the Swerling
[ target, the detection difference between using a square law or a
linear detector is small.

The actual PFAs determined by the Monte Carlo simulation for the

1inear detector system are given in Table 3.

Table 3. Linear Detector Probabilities of False Alarms

FA, N FAc, PFA
3 8 0.114-2 0.98-3 ,
10 16 0.112-2 0.89-3 ,

32 0.98-3 0.89-3

4 8 0.125-3 0.10-3

10 16 0.99-4 0.93-4

32 0.103-3 0.99-4

Average signal-to-noise ratio differences AdB are calculated for a
particular CFAR procedure and the probabilities of detection obtained
for the two detectors. A positive AdB indicates a superior performance
for the square law detector. The average signal-to-noise ratio differ-
ences AdB are given in Table 4 for a cell averaging CFAR and a Swerling
I target and in Table 5 for a "greatest-of" CFAR and Swerling I target. {
The results indicate that the difference in the performance obtained
for either detector and 32 reference cells is at most 0.22 dB. Hence,
most results obtained for a square Taw system could be used for a
": Tinear detector system as well. This is an important conclusion since

the theoretical analysis of the CFAR processors is obtainabie only for |

‘ot

a square law detector, and analysis costs are reduced by not having to

simulate both detectors.

Ll.i
2
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Table 4. Signal-to-Noise Ratio Comparison
for Different Detector Laws and

a Cell Averaging CFAR

PFA, N AdB
3 8 0.240
10 16 0.183
32 0.142
» 8 0.210
10 16 0.172
32 0.148

Table 5. Signal-to-Noise Ratio Comparison
for Diffarent Detector Laws and y
a "Greatest-of" CFAR |

PFA, N dB

-3 8 0.45

10 16 0.3
32 0.22
-4 8 0.43
10 16 0.29

32 0.21

5.5 Clutter Edge Performance Comparison

One problem which must be solved by adaptive detection techniques
is the regulation of false alarms in nonhomogeneous interference. Ffor
radar tnis would be chaff or weather clutter distributed in range.

The boundary of this interference, i.e., the clutter edge (Figure 11)

will move into (or out of) the reference cells as the range cell of

interest approaches (or leaves) the clutter area. Generally, the
signal-to-interference ratio in the clutter area is low and the proba-
tility of detection is small. Hence, the deviation of the false alarm

*-- “vror the originally designed rate is of greater importance.
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S cagt




*

Rt e b -

e, a8

sl 2o ) .

i 4 NN

? 4

71

It will be assumed that the range extent of the clutter will be
sufficient to eventually cover all of the CFAR range cells, i.e., the
reference cells and the cell of interest. The clutter will be described
mathematically as white Gaussian noise with the ratio of the reference

cell noise variance to the cell-of-interest noise variance as
n=1,2, ... N. (5.12)

It has been shown [19] that for the cell averaging CFAR

L N -]
PFA = n]; (1 b ﬁ) . (5.13)

For the condition where the clutter occupies N] < N/2 reference

cells, then t_ = 05/02 =T In each of these cells and T, = 1 for

non-clutter cells, it follows that

N-Ny

. TN S -Ny
PFAc, = PFA, N [1 + 1 <PFAD N 1)] (5.14)

where 5?ﬁb is the homogeneous interference design value.

For N/2:;N1-<N, then the cell of interest will also contain the

clutter and T, = 1 for the clutter covered cells. The uncovered cells

. _ 2,2 _
will have 1, = o /oc = I/TC. Thus

_ 27T NN
PFRc, = |1+ ——~——;;—~——- (PFAD) .

(5.15)

Theoretical results for the "greatest-of" CFAR in nonhomogeneous inter-
ference have been performed only for restrictive cases [11]. The Monte

Carlo simulation allows not only for verification of cell averaging
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theoretical results but also determination of the “greatest-of"
performance.

Performance comparison curves are shown in Figures 38 through 43.
These curves give the probabilities of false alarm versus the number of
cells covered by the clutter for the cell averaging and 'greatest-of"
CFAR processors. The plots contain the cell averaging theoretical
analysis and the Monte Carlo results. There are two regions divided by
the cell of interest.

In region one, where the clutter edge enters either CFAR processor
window, the probability of false alarm is smaller than the originally
designed probability of false alarm. HNence, this region is not
important since both processors will maintain the false alarm rate
below the design false alarm rate. For this region the PFAs determined
by the simulation produce erronegus or no results for probabilities of
false alarm less than 10'5. However, the cell averaging theoretical
results, Equation (5.14), are plotted.

In region two, where the clutter is in the cell of interest and
there are at least N/2 + 1 reference cells, the probability of false
alarm is now greater than the design probability of false alarm for
both processors. The worst case for both processors is when the cell
of interest and N/2 + 1 reference cells are covered. The actual
probabilities of false alarm are given in Table 6.

It is readily observed that both CFAR processors cannot maintain
the design probability of false alarm in certain clutter edge condi-
tions. However, the "greatest-of” CFAR is less sensitive to this
environment. From Table 6 the probabilities of false alarm for the

cell averaging CFAR are a factor of 1.4 to 7.4 higher than the
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"greatest-of" probabilities of false alarm. This factor, which shows
the difference in performance, is a function of the design probability

-6

of false alarm. As shown in Moore and Lawrence [11], for a PFA, = 107",

D
N = 32 and T, = 100, the cell averaging CFAR probability of false alarm
is 57.5 times greater than the "greatest-of" probability of false alarm.
This feature is the primary advantage that the "greatest-of" CFAR has

over the cell averaging CFAR.

Table 6. Comparison of Clutter Edge Probabilities

of False Alarm (5Fﬂb = 10'3)
T
10 ¢ 100
N PFACA PFAG ﬁerA FAG
8 0.93-2 0.66-2 0.14-] 0.77-2
16 0.15-1 0.54-2 0.21-1 0.56-2
32 0.18-1 0.35-2 0.26-1 0.35-2

5.6 Quantization Consideration

Recent radar signal processors are implemented digitally, hence,
the effect of quantization noise must be considered when specifying a
desired probability of false alarm. For this analysis the quantization
or A/D conversion will occur after the detector with wordlengths of 6,
8, and 10 bits and the wordlength is not truncated in the CFAR
processor. Since a given CFAR processor could have any combination of
wordlengths, truncation schemes and assumed saturation level, no effort
will be made to determine a general method to maintain a given false
alarm.

The gquantization errors for 8 and 10 bits wordlengths are negli-

gible, thus, only the results for 6 bits are given in Tables 7

o e ol
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Tables 7 and 8 give the probabilities of false alarm for

the two CFAR processors in homogeneous noise with 02= 1 and 02==2 and

6 bits of quantization.

Table 9 gives the average signal-to-noise

difference, based on the cell averaging CFAR as described in this

chapter, for both CFAR processors and 6-bit quantization.

gives probabilities of false alarm for both processors, linear detector,

and 6 bits.

Table 7.

Quantization Effects on Probability

of False Alarm (Square Law; 6 bits, 02 = 1)

PFA, N PFACA PFAG
-3 8 0.55-3 0.52-3
10 16 0.57-3 0.71-3
32 0.78-3 0.82-3
-4 8 0.19-4 0.51-4
10 16 0.51-4 0.57-4
32 0.64-4 0.66-4
5 8 --- 0.27-5
10 16 0.19-5 0.42-5
32 0.36-5 0.64-5
Table 8. Quantization Effects on Probability
of False Alarm (Square Law; 6 bits, 02 = 2)
PFAD N PFACA FAG
-3 8 0.95-3 0.850-3
10 16 0.94-3 0.103-2
32 0.10-2 0.930-3
) 8 0.68-4 0.910-4
10 16 0.93-4 0.105-3
32 0.106-5 0.112-3
-5 8 0.50-5 0.670-5
10 16 0.77-5 0.860-5
32 0.79-5 0.108-4

Table 10

sk o
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f Table 9. Quantization Effects on Signal-to-Noise
| Ratio (Square Law, 6 bits)
PFAD N ACA AG
3 8 0.362 0.418
10 16 0.286 0.116
32 0.264 0.248
4 8 0.460 0.256 4
10 16 0.314 0.257
32 C.280 0.217
-5 8 0.600 0.382
10 16 0.365 0.276
32 0.294 0.240 1

Table 10. Quantization Effects on Probability of
False Alarm (Linear Detector, 6 bits 02 = 1)

PFA, N PFAc, PFA
_3 8 0.117-2 | 0.75-3

10 16 0.107-2 | 0.89-3
32 0.980-3 | 0.86-3
» 8 0.124-3 | 0.101-3
10 16 0.108-3 | 0.970-4
32 0.108-3 | 0.100-3

It is observed from Table 7 that the probability of false alarm
has decreased for both processors which is undesirable since this is
not the original design value. Even if the CFAR scale factors K and KG
are adjusted to obtain the design probability of faise alarm, the proba-
bility of false alarm would change if the standard deviation of the
noise changed as shown in Tab’e 8. Since the probability of false
alarm (Table 7) decreased due to guantization, the probability of
detection is also reduced. This is ¢ own in Table 9 where the average

signal-to-noise differences between no quantization and quantization
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[
[
)

t are given for both processors. Table 10 shows no real difference in

probability of false alarm due to quantization because of the reduced
dynamic range of the linear detector outputs.
The effects of A/D quantization and finite wordlengths must be

considered when implementing a digital CFAR processor. Even though some
analytical effort has been performed [20], a more complete study can be

achieved only through simulation.

5.7 Non-Gaussian Interference Results

The cell averaging CFAR and "greatest-of" CFAR processors assume
the noise amplitude distribution is Gaussian with an unknown power.
In several instances this is not a valid assumption and a changing
probability density function can be encountered due to a lack of
clutter rejection by the MTI.

Several investigations of natural clutter characteristics have
shown that clutter returns can be described by log-normal or Weibull
[18] types of distributions where the Weibull pdf includes the
Rayleigh pdf as a special case.

The Weibull pdf is a single varia.e function having two

parameters, a and b, and is given by

| \‘ 0 b-] b
i* p(e°) = 2] exp[-(o%) /] (5.16)
: { where ¢° is the variate in terms of the clutter backscatter coefficient,
3

1
b b = 1/A (A = Weibull slope parameter) and

4

b

) o}

F (o)

: = ~—1r?]2 (5.17)
‘; where o; = median value of Weibull pdf.
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( The probability of false alarm performance against Weibull for
A=1, 2, 3 for both CFAR processors is given in Tabies 11 through 13.
For A=1, the Weibull pdf reduces to the exponential pdf, therefore,
the probability of false alarms obtained are the originally designed
values.
For A=2 and A=3, which are representative of natural clutter [18],
the probabilities of false alarm increase by a factor of approximately

100 and 1000, respectively, for both processors. This increase is

unacceptable.
Table 11. Probabilities of False Alarm in Presence
of Weibull Clutter {(A=1)
( PFAD N PFACA PFAG
3 8 0.112-2 0.890-3
10 16 0.117-2 0.118-2
32 0.112-2 0.106-2
i ] 8 0.119-3 0.125-3
10 16 0.106-3 0.111-3
32 0.110-3 0.129-3
_5 8 0.102-4 0.75-5
10 16 0.133-4 0.142-4
32 0.117-4 0.118-4
Table 12. Probabilities of False Alarm in Presence

. of Weibull Clutter (A=2)

> _ | _ _

~ PFA, N PFAcp PFA,

7 3 8 0.331-1 0.252-1

e ! 10 16 0.298-1 0.250-1

= 32 0.283-1 0.237-1
) » 8 0.170-1 0.136-1
. 10 16 0.164-1 0.129-1

- 3 32 0.154-1 0.125-1
z 5 8 0.878-2 0.686-2

N 10 16 0.916-2 0.699-2

- ¥ 32 0.905-2 0.717-2




AD=AD099 988

UNCLASSIFIED

2
i

ARMY MISSILE COMMAND REDSTONE ARSENAL AL ADVANCED S==ETC F/6 17/9
PERFORMANCE COMPARISON OF CELL AVERAGING AND *GREATEST=0F' CONSe=ETC(U)
FEB 81 N B LAWRENCE

DRSMI-RE~81-9=TR SBIE~AD~E950 131 NL




Table 13. Probabilities of False Alarm in Presence
of Weibull Clutter (A=3)

PFR N ﬁ?ﬁtA 5FKG
3 8 0.619-1 0.500-1
10 16 0.498-1 0.410-1
32 0.435-]1 0.356-1
” 8 0.431-1 0.355-1
10 16 0.359-1 0.291-1
32 0.307-1 0.248-1
P 8 0.304-1 0.246-1
10 16 0.265-1 0.210-1
32 0.229-1 0.181-1

A CFAR processor has been designed which maintains false alarm
regulation in log-normal and Weibull clutter [21]. Also, a Weibull
loss has been presented for the cell averaging CFAR designed to main-
tain a constant false alarm rate in various Weibull clutter environ-
ments [16].

5.8 Interfering Target Results

The detection performance of both CFAR processors will be affected
by a target or targets occupying the CFAR window when a target is in
the cell of interest. The interfering target(s) can reduce the proba-
bility of detection to an unacceptable value as shown by Finn and
Johnson [14] in their Figure 18 for a square law detector and a target
pair using a cell averaging CFAR.

For a 1imited detection performance comparison, two Swerling I
targets will be assumed: white Gaussian noise and a square law
detector. Three cases will be simulated: 1) the target of interest
is 10 dB above the noise and the interfering target is 7 dB above the

noise, 2) the target of interest and the interfering target are both

- S e - - -y — B ———— e T T T TN T e
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10 dB above the noise, and 3) the target of interest is 10 dB above the
noise and the interfering target is 13 dB above the noise.

The probabilities of detection, ﬁUCA and ﬁﬁé, determined by the
simulation are given in Tables 14 through 16. Using Equation (3.5) and
the probabilities of detection, IF signal-to-noise ratios, SNRCA for

the cell averaging CFAR and SNRG for the "greatest-of" CFAR are

calculated. The last column, ASNR’ provides a measure of performance
comparison between the two processors.

It is readily observed that the detection performance decreases as
N decreases. Even for a large N, i.e., N=32, the cell averaging CFAR
suffers a detectability loss of 0.7 dB, 1.2 dB, and 2.0 dB for cases
1, 2, and 3, respectively. The signal-to-noise difference, Aonr? gives
the amount the input SNR could be reduced for the cell averaging CFAR
and maintain equivalent performance with the "greatest-of" CFAR. The
- range of Agyp is from 0.3 dB to 0.7 dB.

While both processors are sensitive to an interfering target
environment, the cell averaging CFAR is superior to the "greatest-of"
in this type of environment. This advantage would have to be consid- k

ered when designing a CFAR processor.

S Table 14. Signal-to-Noise Ratio Comparison

“ for a 7 dB Interfering Target

.} PFA; N PDca SR PO, SNRe | Benp
1’ 3 | 8 | 0.266 8.2 0.239 7.8 0.4

10 16 0.38] 8.9 0.357 8.5 0.4

¢ 32 0.449 9.3 0.431 9.0 0.3

2 4 | 8 | 0.140 8.3 0.124 8.0 0.3

- 10 16 0.259 8.9 0.236 8.6 0.3
1 32 0.334 9.4 0.317 9.1 0.3
- 5 | 8 | 0.066 | 8.4 0.058 | 8.1 0.3
o 10 16 0.166 9.0 0.148 8.6 0.4
1 32 0.246 9.4 0.230 9. 0.3
< b
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Table 15. Signal-to-Noise Ratio Comparison
for a 10 dB Interfering Target
PFAD N PDCA SNRCA PDG SNRG Bonr
-3 8 0.194 7.0 0.155 6.3 0.7
10 16 0.318 8.0 0.278 7.4 0.6
32 0.406 8.7 0.374 8.3 0.4
-4 8 0.097 7.3 0.081 6.8 0.4
10 16 0.205 8.1 0.175 7.6 0.5
32 0.294 8.8 0.264 8.4 0.4
-5 8 0.044 6.4 0.036 6.1 0.3
10 16 0.126 8.2 0.106 7.8 0.4
32 0.210 8.8 0.183 8.4 0.4
Table 16. Signal-to-Noise Ratio Comparison
for a 13 dB Interfering Target
WD N PDca SNR¢4 PD, SNR Bonr
) 8 0.124 5.6 0.099 5.0 0.6
10 16 0.243 6.9 0.196 6.1 0.8
32 0.348 7.9 G.299 7.2 0.7
-4 8 0.056 3.5 0.046 2.8 0.7
10 16 0.146 5.1 0.116 4.4 0.7
32 0.242 6.3 0.201 5.7 0.6
-5 8 0.024 6.4 0.019 6.1 0.3
10 16 0.085 7.2 0.066 6.2 0.5
32 0.164 8.1 0.133 7.5 0.6
5.9 Summary

The detection performances of the cell averaging and “greatest-of”

CFAR have been determined and presented.

Both CFAR processors were

designed for three common probabilities of false alarm and the actual
probabilities of false alarm were obtained by the Monte Carlo simula-
tion. For a given probability of false alarm, the two processors have

essentially equivalent detection performance with the "greatest-of"

having approximately 0.2 dB loss as comrared to the cell averaging.
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While both processors have only a slight degradation when a linear
detector instead of a square law detector is used, their performance is
unacceptable in Weibull clutter and is affected by finite wordlength
processing.

The two main areas of performance comparison are the probability
of false alarm regulation in clutter edges and the probability of detec-
tion in an interfering target situation. The "greatest-of" proved to
regulate false alarms much better in the clutter edge environment while
causing an additional detection loss, between 0.3 and 0.7 dB, in the
interfering target environment as compared to the cell averaging method.

It is obvious that the selection of either the cell averaging CFAR
or the "greatest-of" CFAR should be based on the expected radar envir-
onment. Due to similarity in their implementation, a combination of
the two processors and supporting selection logic could provide an

overall improved CFAR performance.




CHAPTER VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.0 Summary

A computer simulation has been developed for a performance compari-
son of two commonly known CFAR techniques. The two techniques are the
cell averaging and "greatest-of." The comparison is based on the proba-
bilities of detection and the probabilities of false alarm obtained by
performing Monte Carlo passes of the simulation.

The two CFAR processors were designed for average probabilities

3 4, and 10'5. These false alarm rates were

of false alarm of 10, 10~
verified by the simulation. Probability of detection versus input
signal-to-noise ratio curves for each false alarm rate were generated
for both processors. Two target models were used: the steady or non-
fluctuating target and the Swerling I target. The probability of
detection results were utilized to make a signal-to-noise ratio
difference comparison and indicated that the cell averaging CFAR would
require approximately 0.2 dB less input signal-to-noise ratio for
equivalent performance to the "greatest-of" CFAR.

The detection performance for a linear detector system was deter-
mined for both CFAR processors and target models. Comparing the
results to a square law detector system indicates that the detection
performance is degraded by the use of a linear detector. However,
this degradation is negligible, especially for a Swerling I target.

Two important analyses were performed: the clutter edge per-

formance comparison and the interfering target results.
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A clutter edge, i.e., residual clutter distributed in range,
affects both CFAR processors by increasing the probability of false
alarm above the design value. The amount the false alarm rate
increases is a function of the design false alarm rate and the CFAR
window size. The "greatest-of" technique provides better false alarm
control than the cell averaging technique in a clutter edge condition.

An interfering target, i.e., a target which is in a reference cell
of the CFAR processor, degrades the detection performance of both CFAR
processors. In general, the amount of degradation is a function of |
the interfering target power, the design probability of false alarm and ‘
the CFAR window size. The cell everaging technique provides better
detecticn performance than the "greatest-of" technigue in an interfer-

ing target environment.

The guantization analysis demonstrated that the probability of

false alarm and the probability of detection are affected by finite

werdlength arithmetic. For some finite wordlength CFAR processors, the
false alarm rate will change as the interference power changes.

The non-Gaussian interference analysis demonstrated the unaccept-
able false alarm rates obtained in Weibull interference for both CFAR
processors.

6.1 Conclusions

The cell averaging and "greatest-of" CFAR processors can be
designed to maintain a constant false alarm rate in homogeneous white
Gaussian noise. The probability of detection obtained for a given
probability of false alarm increases as the number of CFAR processor

reference cells increise for both processors. The two CFAR
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{ techniques have almost equivalent performance in white Gaussian noise

i with the cell averaging CFAR having a slight advantage.
The simulation results have shown a negligible improvement obtained

for a square law detector over a linear detector. Hence, the analytical

L ..
R I

results developed for the two CFAR processors and a square law detector

could be used to describe the performance for a linear detector system. -

Whereas both processors fail to maintain the design probability
of false alarm in a clutter edge environment, the "greatest-of" tech-
nique is affected less than the cell averaging technique and should be
a prime CFAR candidate if such an environment is anticipated.

An interfering target will degrade the detection performance of

‘ both CFAR processors. The cell averaging technique is affected less
than the "greatest-of" technique and should be a prime CFAR candidate
if interfering targets are considered to be a dominant probiem.

Finally, the performance of both processors is affected by finite

wordlength arithmetic and the phenomenon should be analyzed when imple-
menting either CFAR technique. The unacceptable false alarm rates
obtained for both CFAR processors when Weibull clutter is in the

4
!
reference cells requires utilization of a different CFAR if this is the §

expected environment. i
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The results agree with those previously available. But the inter-

~>'e

fering target performance comparison and the "greatest-of" performance

.

jn Weibull clutter and non-Gaussian interference represent results

presently not available.
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6.2 Recommendations

The recommendations for future work are to:

1) Improve the random number generator so that probabilities

5

of false alarms less than 107" can be verified.

7 T

2) Use measured radar data as an input to the simulation to

compare the CFAR processors.
3) Perform an extensive study of linear detector approxima-
; tion algorithm's effect on CFAR performance.
4) Perform an extensive study of finite wordlength effect
on design of and performance of CFAR processors.

5) Determine realistic models of jammers and perform a

! study.

' 6) Develop environmental models which contain clutter edges
b and interfering targets and determine selection logic for the
"greatest-of" and cell averaging CFAR processors to optimize CFAR

performance. Utilization of tracking information should be considered.
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APPENDIX A
FIXED THRESHOLD PROBABILITY DENSITY FUNCTIONS DERIVATIONS

A.1 Introduction

This appendix gives derivations for the probability density func-
tions for the square law or linear detected steady target and for the
square law detected Swerling I target. These probability density
functions are common equations and the derivations can also be found
in Marcum [1] for the steady target and Swerling [2] for the Swerling
I target.

The characteristic function approach is used to obtain the pdf for
the square law detected output. The steady target is assumed to be
distributed in the I and Q channels by

SI = P cos (8)

SQ P sin (0) (A.1)
and

y = (sp+ xp?+ (5g+ xg)
and this changes the pdf's for X1 and xQ by a shift to these mean

values, i.e., zero mean Gaussian

(x, - S
exp[- —"—~2—"—] k=1,0Q. (A.2)

p(x) = ]
vero
In the following derivation the subscript k will be dropped on Xk

and Sk to simplify the equations.

The characteristic function for x2 is
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o 2 . 2,72
¢ H(v) = E{exp(jvxz)} = -l—f exp [- (x-S) 'ZJVX 20 ]dx
X ;/2_710 - 20
o 2 . a2 2
- f eXp[- x_(1 -JVZO%-ZS)HS ]dx (A.3)
A To 20
Now let C = (1 -jv202) and complete the square,
2 25 % % s *
X6 - 2x 4 2 - 24 2
o C C 2 2
() 2(v) — exp |- - ¢ € | ax
X ﬁc Yoo (267/C)
2 g2 2 1
1 2 C 1 J'“’ [ X - % ] /
= —— exp expl- - dx .
Ve (26%/¢) | yor - Yo (262/C)
Ve (A.4)

After integration,
1 SZCE } 1)
¢ ,(v) = ——exp| ————1 .
x2 ‘/C 20

Consequently, the characteristic function for y is

2\ /(1
+S ~ =1
6, (v) = 0,(v)o,(v) = ]Eexp Q Z<C )
X1 XQ 20
exp[— o’ j'expl: P ——-—2——] :l
= ]_ exp[_ i]e)(p[ P2 ] : E;Z 52— (] - j2o V) .
¢ 26° 26° 1 —j202v
(A.5)
Let x = P2/(202) and -v = u, then
X 1
S
ply) = 2R (L2 Ju L1202 epf juyldu
2n(207) Yo Jju + ;5?
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. 2, 52 Vol
1 + P P y)
, = — expl- LT | 1 ( — = July) (A.6)
20° [ 26° ] o\ 2

This pdf is the well known Rician distribution [3]. A linear detector
B is given as z = vy and by a change in variables the pdf for a Tinear

detector can be obtained from Equation (A.6).

A.2 Derivation of Probability Density Function for a
Square Law Detected Swerling I Target Plus Noise

When a Swerling I target is assumed, the results for the pdf are

simplified. This tvpe of target assumed that the group of N returns

have a constant signal-to-noise ratio but that from group to group the
pdf is

( p(x) = -]_— exp[-x/ X Ju(x) (A.7)
X

where x = P2/(202) and x is the average signal-to-noise ratio. This is

used with the characteristic function of Equation (A.5) to obtain

8, (v) = Elo ()} = f o, (vIp(x)ex
gy(v) = f: é—exp[-XJ exp [%] lr exp [ —f—] dx

1 11
) = — exp[x (—1 + = - T)] dx
A cX J;) ¢ X

1 CX(@‘—:-]) X - C - CX
oy X
¢ B -1 . 1
) j X~ 1 +j202 v-;+j202v; 1 ~j202 v(1+Xx)
. 1 (V) = L (A.8)
- y 207 (1 +x) -ijv + A
‘ 206° (1+x)
¥ o
B

.

L N

R ECTUN 9




( The pdf for y can be determined from this to be

! ply) = — L exp[— 7—1——)—:] u(y)

26 (1+x) 207 (1+x

95

(A.9)
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APPENDIX B
DERIVATION OF THE GREATEST-OF CFAR PERFORMANCE EQUATIONS

B.0 Introduction

This appendix gives the derivations for the probability of false
alarm and probability of detection equations for the "greatest of"
CFAR. The derivations were originally derived by Moore [8]. It should
be noted that in an independent concurrent effort, Hansen and Sawyer
[13] have derived the same equations.

B.1 Derivations of the Greatest-Of CFAR Performance Equations

In the "greatest-of" CFAR method two independent thresholds are

calculated, then the largest one is selected, viz.,

KE
Y, = & Y.
1 M i 0

M

K

Y=——Zy.
2 M 3= J
Yth = MAX (Y], Y2) (B.1)

where a simplified notation is used for the subscripts on y and it is
implied that the ranges of the summations are M but that i=j.

The pdf descriptions of Y] and Y2 can be given by

M-1
MY 1 1 Y MY

Papoulis [9] gives an expression for finding a pdf of the maximum of

two random variables, cf., Equation (15), p. 193,

PeolYen) = 2F(Y)p(Y)lY:Yt = 2F (Y )P y(Yep) (8.3)

h

where FY(~) js the cumulative distribution 'unction for Y.

PN




97

This could be used with fixed threshold probability of false alarm

Equation (2.8) to obtain the expected PFA, i.e.,

R —f exp | —EP1 P (v, )dY
60 ~ J, 2o2 | P60t en/en

o -y
th -
2 fo exp [507} Fy(Yep Fy(Yy, Y, . (B.4)

This can be integrated by parts as follows:

u = FY(Yth) du = FY(Yth)dYth

'—-yth t
dv = exp 2;37- FY(Yth)dYth '
L <0
-y
_ th
v —.réxp 75;?] pY(Yth)dYth . (B.5) ‘

' Note that v is in the same form used to obtain PFA for a cell averaging

' . CFAR Equation (3.3}, but this is not a definite integral. It follows

that

v = L Jo"1 expr-b1ab




‘oo .

a8
where PFA is the value associated with a conventional cell averaging
CFAR of window size M. Thus
PFAGO = 2[;V —‘lydg] = ZFY(Yth)v
0 0
My" m
a1 (148) e gy Y
= K th th M
+ 2FFR L ~—————f <—~> exp|- -8 ]+—]p(Y )dy,, .
KA I . (+ D) py VeV,
The first term, F (Yth)v’ yields 0, thus
o wa )
PFR;, = 2PFA {: f 202 exp[ (1+ )]pY(Z a)da
AT
M M-1 Q+_) o
=M 2 K m+M-1 M
= PF (}Z) U’1-—])_|_ m§0 T_J.O a EXD[' a(l + —K—)]da
M 2 M-1 (m+M-1)!
— (M
= PFA( ¢ M E m
Q)(MJHO+%)WQ 1420
ml
1+ M
K
2PFA M1 (meM-1)!
- )2 = (B.7)
K m=0 K
(-1t +5) m!2+g
145
M
-1/M
K —_—
Since (1+-ﬁ) PF , then
__ M=1 |
ﬁ _ 2PFA (m"'M'])' (8.8)

GO 1M - 1/M\
-1y (om0 )
This relates the probabilities of false alarm.

The probability of detection for a Swerling I target with

"greatest-of" CFAR is given by
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oo Y B
5 th
p = exp[~-v,~—~—~;- Pan(Y,. )dY
0,60 fo 262 (1+7)4 60 th/Teh
R ] 2 2
=2 20 exp[- — | Fy(20%a) P {207 a)da . (8.9)
”;J 14 x4 Y Y
Integration by parts gives
= FY(Zoza) du = F§(202a) 202da
2
dv = 20 exp[ ]py(Zo a)da
1+X
M M1 [( ] ) }
vEAx) T exp da
K 1 f \ 1+X
- (Pi)M ! T oMT ey {(~b)db
“\g/ pr-m " MJ;) P
M(1+Xx)
M-1 .m
. (M- 1) (p) ¥ B (B.10)
B CPS)) M EXPL=D) & T s .
(] + K *> m=0
M(1+x)
where
b=(%+ ‘_)a. (8.11)
1+ x

Thus, using the probability of detection for an equivalent sized cell

averaging CFAR,
M-1 bm

= -Pp) exp(-b) Z (8.12)
and
PD,GO = 2rY(20 av . = 2P m§0 2a fO exp(-b) o pY(Zo a)da

1
a (i)
R D M 1+x m+M-1] M 1
X
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) = [ZTM + ] — J a i
(1+5) :
_ <Pi ] >’”
2P M M-1 K
= D M 14X m+N-1
. P S AN ( ) c exp[-c]dc
nt! X +
1+x
_ %y 1 Mi‘ (m+M-1)!
M- M & m
M(1 +x) m! M(1 +x)
1+ —K 1
M(1 + x) )
M-1
(M-T1)! _._]/MM 0 = =1/M
(1 +P ) m (1 4+ P )
D D
| This is the desired expression for the probability of detection.
|
- - - - ow. " ® o m— "h"‘f“v"“-*"% - ——
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APPENDIX C
MONTE CARLO RUN ESTIMATION

The utilization of Monte Carlo simulations for estimation of

LA

probabilities of false alarm and probabilities of detection has a
statistical uncertainty associated with it. This appendix determines
values required to give a priori probabilities for a specified range
of the estimated parameter.

Let Yn represent the nth target/no target decision for the cell
of interest. Thus y, will equal either C or 1. The probability that
Yy = 1 will be denoted as p. Two cases are considered, viz., noise-
only and signal-plus-noise.

Thus

Prob [y 1 | noise only] = p = PFA
n

Prob [yn 1 | signal-plus-noise] = p = PD (C.1)

an estimate of p can be formed by calculating the arithmetic mean of

N determinations, i.e.,

7ol % c.2)
y == y. . C.2
N nep M
< This represents an unbiased, efficient and consistent estimator to the
} expected value of Yp- It is possible to obtain the mean and variance
p of y in terms of the mean and variance of Yoo -0,
9 N
, ~ 1
) Byl =5 L Ely) =ely}t=»
4 n=1
{
- VAR(y )
. - 2 - 1 -
\ ENF-p)2) = VAR(P) = —p = BUL=R) (c.3)
o
1
,
A
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One approach to finding the required value for N is to use Chebyshev's

Inequality, i.e.,

PLIY - Efy}] > e] 5_!5%%21 - Eii—ﬁﬂl- (C.4)
e

letting the value of e depend on p, i.e.,
e = kp (C.5)
yields

pl-e<y-p<e]xl- Llalle- = K. {C.6)
pNe

Thus if the estimate (y) to p is to be within some specified range of
p(te) with better than some specified probability (K) then Equation
(C.6) can be used to determine the sufficient value for N. Typical

results are given in Table C.1.

Table C.1. Values of N Obtained by Chebyshev's Inequality

K =0.5 K = 0.9
P | k=0.01 | 0.1 0.25 k=0.01 | 0.1 0.25
1092 %100 J2x108)3.2x10 [1x10"" |1 x10%]1.6 x 108
10°%12x10% |2x107|3.2x108{1 x 100 |1 x108]|1.6x 10
1042 x108 {2x10°{3.2x10° |1 x10° {1x10 {1.6x10°
103]2x107 f2x10°{3.2x10% |1 x108 |1 x10%}1.6x10°

——

0.5 |2 x 10* 200 32 1x10° |1 x103] 160
0.6 [1.33 x10%| 133 21.3  |6.67 x 10°| 667 107
0.7 |8.57 x103| 85.7 | 13.7 {4.29 x 10*| 429 68.6
0.8 |5 x10° 50 8 2.25 x 10° | 250 40
0.9 |2.22x 103 22.2 | 3.5 1.1 x10%] m 17.8




1 103

Figure D.1. AP-1208

| APPENDIX D
' FLOAT ING POINT SYSTEMS AP-120B
The Floating Point Systems AP-120B is a loosely coupled synchronous
X array processor which uses pipelined arithmetic elements. The array
processor uses a 38-bit floating-point format and has a cycle time of
167 nsec. Figure D.1 shows the structure of the AP-120B, which con~
sists of an interface to the host computer, a program memory, a 16-bit
‘ integer ALU, data memory, table memory, accumulators, I/0 interface, j
and arithmetic elements. h
1
! |
INTERFACE —~
( unit [~
! i
Y
‘.
o 1 { : y , CONTROL
ACCUM- ACCUM- MAIN
TABLE PROGRAM 16-81T
memory | | ULATOR Moy MEMORY MEMORY | | INTEGER
#1 ¥2 ALy
: A
N l ) | \ ] |
;"- FLOATING FLOATING
Y PONT PONT
¢ MULT. ADDER
&
1 l Y
R |
]
i
h
B "




»

P4 ?, K
e

«';v W adae}. b & o !

T=-Te

. .

.

Is
2

104

The interface contrals data, program transfer, and format conver-
sion between the host and array processor.

Control consists of two elements: a 16-bit ALU which performs
integer address indexing and Toop counting for all of the memory
elements. The second element is the program memory which contains the
microcode to be executed in the array processor. This memory is 64
bits wide with each word being subdivided into 10 command fields. Each
command field controls an element in the array processor, thus every
element can be active in every machine cycle.

The main data memory is used for data; the table memory is used
for storing constants and the accumulator blocks for intermediate
result storage.

The AP-120B uses a unique bus structure in that there are dedi-
cated paths between each memory and each arithmetic element, thus maxi-
mizing the flow of operands and resultants between functional elements.

The 1/0 interface allows the attachment of peripheral devices
directly to the array processor.

The arithmetic elements consist of a 3-stage multiplier and a
2-stage adder, each stage running at the cycle time of the array
processor (167 nsec), thus a multiply-add can be obtained in every
cycle of the processor.

The software can be broken down into two categories:

a. Control Software - This software supplies the linkage

between the host computer operating system and the array processor.
It is usually in the form of a device driver.
b. User Software - This software enables a user to write

programs for an array processor. Typically, this can be done at two

- "
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levels. A user can program in Fortran by writing a program for the
host computer which consists of a series of calls to the array processor
math library. This math library is supplied by the vendor and consists
of a library of mathematical rcutines which have been coded for the
array processor. Figure D.2 shows an example of such a program to
compute a Fast Fourier Transform. Obviously, when the array processor
is used in this manner, its internal structure is transparent to the
user.

The second level of programming is to program the array processor
directly in assembly language. Usually the vendor supplies an assem-
bler, simulator and debug aids to assist the programmer. Figure D.3
shows such a program written in the assembly language for the FPS
AR-120B. This program calculates Ci - A1’2 + B1'2 where i ranges from
1 to N. The y axis of the figure represents machine cycles, while the
x axis represents flow through the pipelines. The program reduces to
a 4-cycle Toop. However, this loop does demonstrate the parallel struc-
ture of array processors, for example, on the first cycle of loop, a
memory fetch, a floating multiply, a memory save and floatirng add are
all in progress on the same machine cycle (contrast this with a conven-

tional computer). At this level, the programmer has to be aware of the

internal structure of the array processor to maximize performance.

oo S
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] CALL APCLR Clear array processor
! CALL APPUT Transfer data to array processor
CALL CFFT Perform complex FFT
; CALL APGET Transfer results to front-end computer
Figure D.2. AP Fortran
FETCH STAGE MULTIPLY STAGE ADD STAGE f
FETCH A n l
FETCH B
: NOP
( SAVEX
, FETCH A; FMUL A, A, SAVEY B
;« FETCH B; FMUL B, B
NOP; FMUL
SAVEX A; FMUL; SAVEY A
LOOP: FETCH A, FMUL A, A, SAVEY B FADD B, A
FETCH B, FMUL B, B FADD
4 NOP; FMUL ; DEC N
fi SAVEX A; FMUL: SAVEY A2 STORE C; BGT LOOP
: PONE: PETURN Figure D.3. AP Assembly
‘ i
4 :
.’i i
1 ]
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Table E.1. Main CFAR Simulation Program

pROGRAM T( 2TMULATE A CELL-AVERAGING

wte? GPFATES ¢ rFaR FOR COMPARISON OF THE TWO
ALLURTTMMS b+ ~ NTE CARLO TECHNIGUES. THE
COMFARTSON Zmte BE MAQDE FOR UARIOUS
ENVTROMMENTS “ND JORD LENGTHS.

INPUTS
SEED - UNJFORM RANDON NO. GEMERATOR SEED
STDU - STANDARD DEVIATION OF GAUSSIAN NOISE
NEAN - MEAN UVALUE OF GAUSSIAN NOISE
SNRI - INPUT SIGNAL-TO-NOISE RATIO
NTAR - TARGEY MODEL NO.
NDET - DETECTOR LAW: SG. LAU-0 LINEAR-1
MJD2 - HALF OF CFAR UINDOW UI1D
PFDCA - DESIRED CFAR PROBABILITY OF FALSE ALARN
PFDGO -~ DESIGM GO PROBABILITY OF FALSE ALARM
NMCR - NUMBER OF MONTE CARLO RUNS
IPDF -~ RUN INDEX: PFA=9,PD+1
NSN - NO. OF SMR RUNS
NC -~ NO. OF CELLS COVERED
TAU - RATIO COVERED/NON-COVERED
1skp - CELLS SKIPPED BY CFAR
19 - QUANTIZATION: YES>®
NBIT - NO. OF BITS
IUEL -~ WEIBULL CLUTTER: NO=@,YES*1
A - WEIBULL PARAMETER
CPOM - WEIRULL CLUTTER POUWER
IDCG - DISK INDEX: CR=@,GOei

CALCULATED INPUTS

CKCA - CA THRESMOLD CONSTANT N
CKGO - GO THRESHOLD CONSTANT

AMPI - INPUT AMPLITUDE AT IF

oUTPUTS

PFCA - CA PROBABILITY OF FALSE ALARM OBTAINED
PFGO - GO PROBABILITY OF FALSE ALARM OBTAINEL
PDCA - CA PROBABILITY OF DETECTION OBTAINED
PDGO - GO PROBABILITY OF DETECTION OBTAINED

DINENSION PFDCA(D),PFDEO(D), MIB2(9), NACR(D)
DIMENSION DUR(4),PDCA(160),PDGOL108)
EQUIVALENCE (M.Mll)).(GOoM(i!)).(DCﬁ:MG)1,(DGO.DI.H(4))
REAL WEAN,NACR

DATA PFDCA/3%1.E-3,3%1,.E-4,382.E-5/

DATA PFDGO/0.8773E-2,0.5069E-2,0.3181E-2,
0.22276-2,0.10436-2,0.5318€-3,
9.5998£-3,0.2297€-3,0.9400E~4/

DATA NUDZ/4,8,16,4,8,16.4,.8,167

DATA NRCR-381.0€8,381.0E9,381.E18/

CALL ASSIGN(3, "DK1ICFAR.PLT', 0, 'NEW’)
DEFINE FILE 3(200,128,U,JJ)
SEED+0.2510483945
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Tabie E.1 (cont'd)

NDET«0

1PDF =@

Tayel,
TAUSRSQRT(TAL)
ISKPey

16=9

NBIT-8

INEI =0

ICI~¢
IF(NDET.EG.9) G-10222/2.33NB1T
IF(NDET.EG.1) Q=1Q0/2.23NBIT
CALL APCLR

CALL VUCLR(®,1,32767)
CALL APUR

CALL APPUT(A,13,1,2)
CAaLL APFUT(CPOU 14 1
CALL APPUT(SEED, 16,
CALL APPUT(STDV,S,

AL

IF(IPDF.EQ.1) URITE(6, 102)

FORMAT(71H1,2H N,6X, 4HSNRI, 13X, SHPFDCA, 13X, 4HPDCA,

13X, 44PDGO )

IFCIPDF.EQ.0) URITE(6,103)

FORMAT(/1H1,2H N,6X, SOPFDCG 13%, 4HPFCA,

13X, SHPFDGO, 13X, 4HPFGO

IFC(IPDF .EQ.2) UR!TE(G 105)

FORMAT (/1M1 ,2H M, 3X,2HNC,6X,SHPFDCA, 13X, SHPFTCA, 13X, 4HPFCA,
13X, WONPGO 13X, 4NPFGO

IFCIPDF.€Q.2) NCLU-MU2+14

CKCA= (PFDCA(J)ISX(-1./M42)-1.)

CKGO= (PFDGO(J)X8(-1./7My)-1.)

IF(NDEY.EQ.1) CKCA-SORT(CKCASNU2)IZ1. | 4/NU2
IF(NDET.EQ.1) CKGO-SORT(CKCOSNU)ISS.14/NJ
CALL APPUT(CKCA,S8,1.2)

CALL APPUT(CXGO,9,1,2)

CALL APUR

FHRCR=MACR(J)

IFCIPDF .EQ.1) FMRCR=1.ES
'zg{m(FMI(I.ESIFLMT(ISKP)-I )
IFCIPDF .NE.1) NSN=1

sux’uamr.-m-no SE LOOP

AMPI-STDUSSORT (2.210.38(SNRI/10.))
CALL APPUT(AMP],10,1,2)

CALL APUR

NN+
ﬂl:"“lﬂl
L]
MTOYIM CLUTTER LoOP

DO 6 ICLU=1,NCLY
IFCICWY. 01’ MW1100 TO 11

ade

RO ORI
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Table E.1 (cont'd)

PETCAPFDCA! JIER(FLOATINUR-NC 1 /FLOATINGR) )
PFTCA*PFTCAX(1.4TARUS(PFDCALJS)EB(~L . /NUR)~1.))88(~NC)

GO T0 99

IFCICLU.LT.NY14) GO TO S

PETYCAPFDCACJ ISR (FLOATING )/FLOAT(YU2))
PETCAPFTCAR(L. ¢ (PFDCACJ)IZE(-1./7M2)-1. )7TAU SR (NC-N42)
CONTINUE

CALL APPUT(SEED.4,1.2)

CALL APPUT(SEED,7,1.2)

Catl APUR

CALL UCLR(9,1,4

((::QLL W(N NHON NYAR,NDET, ICLU, ISKP,1Q, 1WE])

CALL APGET(DUM,,4,2)
CoHLl APUD

IF(MCLU.NE.®) GO TO 10

PFA AND PD CALCULATION

PFCA=CA/(FNACR)

PFGO=GO/ (FNMCR)

PDCA(I)=(DCA-CA)/FNACR

PDGO( ] )= (DGO-GO ) /FNMCR

IFCIPDF.EQ.1) URITE(6,101)M2,SNR],PFDCA(J),PDCA(T),PDGOCT)
IFCIPDF .EQ.9) URITE(B,103)NJ2,PFDCA(J),PFCA,PFDGO(J),PFGO
roagg'r;ex.xa,:x::a.s,usx.txa.S))

GO

NONSTATIONARY CLUTTER PFA AND PD CAL.

NC1-NC+1

PDCA(NC1 )=CA/FNIRCR

PDCA(NC1+MU2+1)=CO/FMICR

NC2-MC1+(MUC+1)82

PDCA(NC2)=PFTCA

URITE(E,104) NU2,NC,PFDCA(J),PFTCA,PDCAINCE),PFDGOCS)

,PDCAINCI+NU241)

FW:%T(EX.IE,3’(.12.3)(,512.5.4(5)(.512.5))
NC=NC+

CONTINUE

SMRI=SNRI+t .

CONTINUE

DISK URITE

IFCIPDF.£Q.0) GO TO 2

IFCIPDF.EQ.2) NSM=3IX(My2+1)

IF(IDCG.£0.0) URITE(I’ICI) (PDCA(IP),IP~1,N5M)

IF(IDCG.EQ.1) URITE(3’ICI) (PDGOCIP), IP«1,NSN)

ICI=-ICI+1

COMT INUE

STOP
END




{ - i e S ——
R |
g
110
{
SUBROUTINE THLN
‘ PURPOSE : To generate target noise and clutter inputs to CFAR
: program.
FORTRAN CALL: Call THLN (NWD2, NMON, NTAR, NDET, ICLU, ISKP, 1Q)
PARAMETERS: NWD2 = Half of CFAR window width
NMON = Number of program passes
NTAR = Target model number
NDET = Detector law: Sguare Law = 0; Linear = )
ICLU = Number of cells covered
' ISKP = Cells skipped by CFAR
( 10 = Quantization: No = 0; Yes = 1
| IWEI = Weibull Clutter: No = 0, Yes = 1
k? EXTERNALS: VSQRT, VRAND, VLN, VFILL, QUANT, RANDM, VSQ, VMVL,

VADD, CFR, VNEG, WEIBULL
SCRATCH: SP (0-6, 12-14), DPX (-4, 3), DPY (0, 1)
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Table E.2. Subroutine THLN

STITLE THLM
* AP PROGRAM TO GENEPATE TWRGET AN
NGISE INPUT FOR LFAR PROGRAM
THERE ARE EIGHT [NPUTS!:
NUD2 - MHALF OF CFAR WINDOW UIDTH

* NMON -~ NO. OF PROGRAM RUNS

* NTAR - TARGET MODEL HO.

* NDET - DETECTOR LAW:SG. LAW®®;LINEAR=1
* ICly - NO. OF CELLS COVERED

* I1SKkP - CELLS SKIPPED BY CFAR

. 1Q - QUANTIZATION: NO=8,YESe)

: IMED - WEIBUL: NO=@,YES=i

SENTRY THLN,8

SEXT USIN,UCOS

SEXT USGRT, URAND, VLN, UF ILL,QUANT, UMuL
SEXT RANDM,USQ,USMUL,VADD,CFAR, UNEG
M2 S€EQU @

-
n
[~}
[~
~ VNaWu-

-
(2]
5
[ ]
m
e

-

oW

1CLT SEQU 12
THLNILDDPA; DB-13.
MOV NTAR,NTAR; DPX(8)<SPFN
WOU NUD2,MJDZ2 3 DPY (@) CSPEN
MOY MPMON, NON; DPX (1 ) CSPEN
MOU MDET.NDET; DPX(2)<SPFN
MOV ICLU, ICLU;DPX(-1)CSPFN
MOV 1SKP, 1SKP; DPX( -2 )(SPFN
nov 10,10;DPX(3)CSPFN
nov IMEI, JUEI;DPY(3)ICSPFN
LDSP1 14,DB=10.
NOU N199,N106;DPY(1)(SPFN
LDSPI 13,DB+493.
SUB MJD2, ICLA; DPX(-3)(SPFN
MOV NRON, NMON; DPX (-4 ) (SPFN
LOOP: LDDPA; DB-13.
. GUASSIAN RANDOM NO.GENERATOR
LOSP1 &,DB-4.
LDSP1 1,D8-400.
LDSP1 2,DB=20400.
LDSPI 3,08-6.
LDSP1 4,DB-5S.
LDSP1 5,D0D-21000.
LDDPA

b . i .
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Table E.2

LDODKA; DE-4.
Jsp Eany

LODF A, OB-: -
LO3#] @,0f-c'498.
LDSF: 1, DE-1.
LDSPL 2.Db-21409.
LDSPY 3,DB-1.
LDSP1 4,DBe10c00.
LDDPA; DB-4.

JSR uln

LDDPR; DB-13.
LDSP] ©,0B*21400.

LDSP] 2.DBe21400.
LDSPI 3.DB-1.
LDSPT 4 DB=10209.

LDDPA; DB=13.
LDSPl ©,DB-4.
LDSPI 1.DB-400.
LDSP! 2,08-1.
LDSPI 3,DB-10200.
LDDPA; DB-4.

JSR URAND

LDDPA; DB=13.
LDSPI @,DB408.

LDSPI 3,0B-400.
LDSPI 4.08-1.
LDSPI 5,DB-10200.
LDDPA; DB-4.

JSR USMUL

LDDPA; DB-13.
LDSPI 0,DB-400.
LDSPL 1,DB-1.
LDSPI 2,DB-10600.
LDSP1 3,DB-1.
LDSPI 4,DB-10200.
LDN’:"& DB-=4.

JSR

LDDPA; Dl'll.
LDSPL 0,DB-400.
LDSP1 1,DB-1.
LDsPl Z.Dl'
LDSPI 3,DB-1.
LDSPI 4,DB-16200.
ani DB=4.

JSR

LobPa; DB=13.

(psP1'e.DB- 4de

1,081,

LosP1 2:DB-2i400.

LDSPI 3.D°1.

LDSPI 4.DD

LDSPI S.DBe1.

2 L

JsR UL

Lboea, B3-13.
o.Db=1é600.

thow

LosP

(cont'd)

1,08-
a.m-nm.
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Table £.2 (cont'd)

LNUE]:

JSR L
OCHs Loﬁﬂﬂ“D.-IS.
* NOISE ¢ TARGET

LDSP1 3,DB-1.
LDSPI 4,DB-10660.
LBSPI S,0B-1.
LDSPI €,Lb-10200.
LLDPA; DBe4d,

JSR UNMUL

LDDPA; DB=33.
LDSPI 2,DB=DPx(9)
MOV NTAR,NTAR

BEQ CASE
JAP CAS1
CASE © TARGET GENERATOR

CASe: LDDPA; DB=13.

LDSPI @,DB-10.
LDSP1 1,DB-30000.

LDDPA; DB=13.
JRP GlH
CASE 1 TARGET GENERATOR

CAS1t LDDPA; DB-13.
LDSPi

9,087,
LDSPI 1,DB-30000.
LDSP1 2,DB-1.
LDSPI 3,DB~10000.
LDDPA; DBe4.
JSR URAND
LDDPA; DB-13.
LDSPI ©.DB-30000.
LDSPI 1.DB-1.
LDSPI 2.DB-30000.
LDSPI 3,DB-1.
LDSPI 4,DB-10000.
LDDPA; DBe4.
JSR

LDDPA; DB-13.
LDSPI ©,DB«39000.
LDSPI 1.DB-1.
LDSPI 2,D8=30000.
LDSPL 3,D3-1.
LD5P1 4,DB-10000.

LDDPA; DB-4.
Jow ohea. |
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Table E.2 (cont'd)

LDSPI o, TB-30000.
LDSPI t,lket.
LDSPI 2,DB-500.
LDSPI 3,DB-1.
LDSPI 4,DB8-30000.
LDSPI S,DB-1.
LDSP! Di‘l““.

Sor odop” R
LDDPA; DB+13.
LDSPI e, DB+ 36000.

LDSPI 4, .DB=10000.

Son vba d

. NOISE ONLY
LDDPA;DB=13. j
LDSPI 9,DB-DPX(#) i
LDSPI 13,DD-493. {
SUB NUD2, 1CLA; DPX(-3)<CSPFN
LDSPI 12,DB<DPX(~1)
CLUt LDDPA;DB=13.
LDSPI @, DBsDPX(-3)
LDSPI 1,DB=DPX(-2)
. LDSPI 2.DB+11.
LDSPI 3.DB=DPX(~3)
LDSPI 4,DB=DPX(-2)
LDSPI S,DB=200.
LDDPA; DB-4.
( JsR ubmuL
LDDPA; DB=13.
LDSPI 13,DB=DPX(-3)
\ INC ICLA;DPX(~3)CSPFN
DEC ICLT
BEQ NOIS
JAP cLU
MOIS: LDDPA; DB-13.
LDSP1 @, DB=40e.
LDSPI 1,DB-1.
LDSP1 2,DB-409.
LDSPI 3,DB-1.
A et
JSR vio

LDSPI S,DBe1.

LDSPI 6,DB-10000.
* LDDPA; DDe4.

JSR U‘D

D
o LDDPA; DB=13.
S LDSP1 @,DB=400
LDSPI 1.DB=1,
L (DSPL 2,D8-10600.
o LDSPI 3.DBei,
Lept g:-:u.
CDert 6.D3-10200.

OA
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' Table F.2 (cont'd)

LDUPA; DBed.
JSR JADD
. DETECTOR LAM
LDDPA; DBet3.
B LDSPI 3,DB=DPx(2;
MOV NDET,NDET
BNE END
JWP SLD
. . LINEAR
END: LDDPR: DB-13.
LDSPI o,DB-30e06.
LDSPI 1,DBe}.
LDSPI 2,DB-30400.
LDSPI 3,DB=1.
LDSP1 4,DB~10000.
3 LDDPA; DRe4.
JSR USQRT
' LDDPA; DB-13. K
o LDSPI @,Dp-4@0. /
LDSPI 1,DBei.
LDSP1 2,DBe400. :
LDSPI 3,DBe1.
LDSPI 4,DB=10209.
. LDDPA; DB-4.
JSR USQRT
. SQUARE LAY
SLD: LDDPA; DBe13.
. QUANTIZATION
‘ LDSPI 6,DB=DPX(J)
mov 1q,l0
BNE LOOPZ
JnP LOOP1
! LOOP2: LDDPA; DB-13.
LDSP1 ©,DB-400.
LDSPI 1,DB-12.
} LDSP] 2,DB-10200.
LDDPA;DBe4.
JSR QUANT
LDDPR; DB=13.
LDSP1 ¢.DB+=36000.
LDSPI 1,DB=12.
LDSPI 2,DB+10000.
- LDDPA; DB=4,
JSR QUANT

L

LDSPI 6,D8-493.
LDSPI 7,DB=597.
:S. DB=500.

g

LDSPI 13,DBeDPX(-2)
o LDDPA; DBe4.
B JSR C"ﬂ
b Y b TARGET ¢ NOISE CFAR
» LDDPA; DB=13.
. LDSPI' 0, DBeDPY (@)
J LDSPI 1,DB~1000.
; LDSPI 2.DBe2.
LDSPI 6.DB-493.
. A LDSPT 7,0DB=607.
A LDSPI 1€,DB+30000.
-3 LDSPI 13,DBeDPX(-2 ;
71 . .
! q ;
O !
3
-
3
&
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Table £E-2 (cont'd)

. LDDPR, LBea
2 JSR CFak
s LDOPA; >3e13
LDSP: 1, 0Be0F 4t
DEC NPCR;OPY' 1, SHFN
BEQ FIN
) JNP LOOP
FIN: LDOPA; DBe:3.
LDSP1 1,DBeDPx(-4.
NOU_NRON, NMON ; DY 1) (SPFN
LDSPY 14,DBeDPV(1)
DEC N100;DPV'1 :(SPFN
BEG FINI
Jne LOOP
FINL: LDDPA;DB-4.
RE TURN

— e

SEND
b




PURPOSE :

PARAMETERS:

EXTERNALS:

¢ SCRATCH:

FORTRAN CALLS:

17

SUBROUTINE CFAR
To simulate two CFAR algorithms: Cell averaging
and greatest-of

Call CFAR (NWD1, NT, OA, NN, TB, TA, TCI)

NWD1 = Half of CFAR window width

NT = Total number of inputs

0A = AP output address

NN = Number of cells skipped

TB = AP address before cell of interest
TA = AP address after cell of interest
TCI = AP address for cell of interest
None

Sp (0-2, 6-7, 13-15)
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Table E.3. Subroutine CFAR

STITLE CFAR
AP

N TO SIMULATE TWO CFAR
. ALGORITHMST CELL AVERAGING AND
* GREATEST-OF . THERE ARE SEVEN
* INPUTS:
* NMID2 - HALF OF CFAR WINDOV WIDTH
* NT - TOTAL NO. OF INPUTS
. oR - AP QUTPUT ADDRESS
* NN - NO. OF CELLS SKIPPED
* 3 - AP ADDRESS BEFORE CELL OF INTEREST
. TR - AP ADDRESS AFTER CELL OF INTEREST
* TC1 - AP ADDRESS FOR CELL OF INTEREST
SENTRY CFAR,7?
NJD2 SEQU @
NT SEQU
oA SEGU @
NN SEQU 13
TR SEQU 6
Th SEQU 7
TCI SEQU 1S
sEQU 14
CFAR: MOV NUD2,NS
DEC NS
SUB NS, TB
LDTRA; DB='ONE
NOP
DPX(2)CTA
MOV OA,0A; SETHA
NOP
NOP
DPY(3)<AD; INCHA
NOP
NOP
DPY(-4)<MD

LDSPI 10,DB°8.
noy 10,10; SETHA
NOP

NOP
DPY(0){ND; INCRA
NoP

NOP

DPY(-3)<AD
s LOOP FOR ADDING M PREVIOUS CELLS
LOOP4: :g ZERO,ZERO; MOV TB,TD;SETMR

ROV NuD2, NS
LOOPIt  INCMA WW
FADD KC NS
FADD ém
DPX(-2)CFA
* LOOP FOR ADDING N FORUARD CELLS
FADD 2ERO,ZERO; MOV TA, TA;SETHA

MU 2. 5
LoOPR:  INCRA(DPRGND
FaoD ‘n{' L&m
W(l
*  ADDING SUMS WD STORING IN DPX(S)

FADD DPY(1),DPX(-2)
FADD

DPXCFA
*  FINDING LARGEST SUM AND STORING IN DPX(-3)

118
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, Table E.3 (cont'd)

FSU: DPX{-R),DPY(1)

DPX(-3)<Der-a)
PFGT L

DPX! - 3)(DPV(l)
- LOOP3: :DD NN, TA

DD NN, TB

. MULTIPLY SUMS BY K/N
FMUL DPX(9),DPY(Q)
FUUL DPX(-3),DPY(~-3)

) FRUL
FMUL ; DPXCFR
FnuL nvm-:urn
“cx TCI;SETHA

e

NOP

. DPY(2)<ND

) . PERFORA CA THRESHOLD COMPARE
:sg: DPY(2),DPX(@)
Al

:FGE CROSS
CROSS? Fﬁgg DPX(Z) DPY(3)
DPY(3)<FR
* PERFORN GO THRESHOLD COMPARE
FIN:  FSUD DPY(2),DPX(-3)
FADD
NOP
l :FGEICROSI
CROS1¢ F“Dg DPX(2),DPY(~4)
DPY(-4)<FA
FINLt ADD MN,TCI
SUB NN, NT
BEQ FIN2
JHP LOOP4
. STORE NO. OF DETECTIONS
FIN2: MOV OA, 00
&(’V(:’)]SEW

. N1COPY(-4); INCHA
: NOP

. .-

'ligm DB-4.

%

.

e
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SUBROUTINE VRANDX
PURPQSE : To generate an array of random numbers uniformly
B distributed between 0 and 1.
FORTRAN CALL: Call VRANDX (A,X,I,N)
PARAMETERS: A = Address of starting seed
X = Base address of output array
} I = Increment between elements of output array
N = Number of output samples desired
FORMULA: Technique used is multiplicative congruential method.
X(0) = MOD(B*A,1:0) where B = 27.0
X(M) = MOD(B*X(M-1), 1.0) for M=1,2...,N-1
' EXTERNALS: None
b SCRATCH: sP (0-3, DPX (0-2), DPY (0)
NOTES: 1. Preferred starting seed is 0.2510637948.
N 2. At completion the seed is set for the last

number generated.
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Table E.4. Subroutine VRANDX

't!ltl VRANDX = VELTOP RANDOM NUMBERS /CC™MON- - REL 3.0, AUG 77 33x18x
FOR EITMER REMORY
STITLE URANDX

. SENTRY URARNDX, 4

. ---ABSTRALT---

*FILLS VECTOR C UITH A SEQUENCE OF FLOATING POINT RANDOM NUMBERS
SUNIFORNLY DISTRIBUTED DETUEEN 0.0 AND 1.0. SEQUENCE IS GENERATVED
*USING A SEED A. FOLLOVING GENERATION THE SEED 1S SET TO THE LAST
*RANDON NUMBER GENERATED, THUS ALLOWING THE SEQUENCE TO DE CONTINUED

'!N THE MEXT CALL TG URAMP. SUGGESTED SEED FOR FIRST CALL IS 0.2510637948.

*TECHNIGUE USED 15 MULTIPLICATIVE CONGRUENTIAL METHOD.
‘qu* C(9)*NOD(B3R,1.0) UHERE B-27.0
C(AC)=NOD(BRC((R-1)K), l..) FOR Nef TO N-i
AMD R » CO(N-1)K)

.
L]
: -~-STATISTICS-~-

LAMNGUAGEt APAL

SEQUIPMENT: AP-126 UITH EITHER MEMORY

*SIZE: 16 LOCATIONS

'mm INTRO: S CYCLES
LOOP: ?7-8 CVCLES (7.1 CYCLES AVERAGE)
COLUMNS /L.00P1
FLOPS/LOOP: 3
1.19N + 0.83 USEC, FOR 167 NSEC CLOCK
MEGAFLOPS: 2.52

SUBROUTINES USED: NONE

AUTHORS R.S. NORIN

DATES  JAN 77

SFORTRAN: CALL URAMDX(A,C,K,N)
JSR URANDX

*APAL 1
*5-PAD_PARARE TERS
e, TUNBER
A sEQu *ADDRESS OF SEED
¢ w1 *BASE_ADDRESS OF DESTINATION VECTOR C
K SEQ 2 - INCREPENT BETUEEN ELEMENTS OF C
N SEQ 3 *NUNBER OF ELEMENTS IN
*YABLE WEMORY
JONE SEQU 'OME
SSCRATCH:  SP(1,3), DPX(0-2), DPY(0), DPA UNCHANGED
L]
URANDX: WOV A,A; SETAA *GET SEED A
RPSF B{ Dex<os *GET MULTIPLIER B
LDTAA; 0B -0NE
RPSF FRASK, DPX(2)CDB  1GET FRACTION MK
DPX, *3%4
DPX(1)CT; *SAVE 1.0
SUB K,C *DACK UP DESTIMATION ADDRESS
LooPs *PUSH
FAUL *PUSH
FSUS FM,DPX(1); *FORM DRA-1 SINCE METHOD
{EXTRACTING FRACTION WILL %% DIFFERENT
*IF BEAC1.0
DPYCFR *SAVE DA FOR LATER
ADD *PUSH
FAMD DPX(2),DPY SASSURE BIM)1 $0
“PRACTION CAN BE EXTRACTED UITH MASK
FADD ZERO,DPY; *GET FRACTION DIRECTLY IF BRAC1

1 e Ay o
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Table E.4 (cont'd)

3 DEC N *DECREMENT COUNT

FGY laYl *LET FRALTION IMMEDIATELY FROM
‘FA IF Bred)
FADD; MOU N, N "THIS IS AN EXTRA CYCLE
’ *IN LOOP 1F B3R(L
GT1: ADD K,C;SETRA;MICFAR; “STORE RANDOM NUMBER
FN{ DPX,‘Q; “STARY FORMING NEXT NUMBER

SME *CONTINUE UNTIL
DONE 3 MOV A,R; SETMR; MICFA; °DONE. THEN STORE LAST RANDOM
*NUMBER AS THE NEW SEED.
RETURN "THEN EXIT.
B: SFP 27.90 'MULTIPLIER CONSTANT

' FRASK:: ::D 0.9999999925 *FRACTION MASK
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SUBROUTINE RANDM
PURPQSE : Generates an array of random numbers which are
i independent and have a Gaussian distribution.
FORTRAN CALL: Call RANDM (A, X, N, MEAN, STD, SCR)
PARAMETERS: A = Address of starting seed
X = Base address of output array
N = Number of samples desired
MEAN = Location of the desired mean value
STD = Location of the desired standard deviation
SCR = Base address of scratch storage (N words
of scratch storage are required)
| FORMULA: Starting from two random numbers Uy and Uy which are

uniformly distributed between 0 and 1, two Gaussian
numbers with desired mean and standard deviation are
obtained as

m] = n] o+

m2 = n2 gty

where

ny = /:ﬁ—Tﬁ"UT cos (2nu2)
ny = VZT0 Uy sin (2ru,)
E‘i EXTERNALS: VRANDX, LN, SQRT, COS, SIN
B SCRATCH: sP (0-9), OPX (-3, -2, 0-2), DPY (-3, -2, 0)
| ? NOTES: N words of scratch storage are required
2
&

b 28

e




Table E.5. Subroutine RANDM

STITLE RANDN
SENTRY RANDN, 6
* S$EXT URANDX,LN,SQRT,CCS,S51n
SEEQ SEGU ©

1
N SEQU 2
NEAN SEQU 3
STDU SEQU 4 .
: Z SEQU S
~S SEGU 6
XS $EGQU 7
N2 SEGU 10
¥ SEQU 11 {
X1 sEQU 3

x2
RANDNt MOV MEAN,REAN; SETMA A

N, NS
MOV STDV,STDV; SETMA ;
INC N3 DPX(-3)<BD '
MOUR N,NZ; LDTRA; DB~ (TWOPI '
MOV X,v; DPY(-3)CND
'x$; DPX(-2)<Th

a2
§§°§
mb-f

,0B=1.
DX
SC?M

3325
A5S
S

]
x
zg?g
[ 5
]
g

LOOPy

X3SETHA

X3; SETMA; MICDPX; BNE LOOPI
N2 N

»
¥, X3SETMA
2,x1
DEC X3
LOOP2: FMUL DPX(-2),MD
FMUL; MOV X1,X2

gadatis

WX(M(-Z)) JSR SIN
INC X;SETRA
DEC N

INC X2; WICDPX; SETMA; BNE LOOP2
AoV N2, N

~ DPX<MD; X2
a ADD N2,X1; SETRA
LOOP3s FMUL

k)

. .
-
SR ¥ Y NIV

ING %2y SETAA, WICER; FRUL
NC 0s SETRA; MICFR
ING 2; $ETNA

£

., g, "
ek r- ¥ A
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i
Table E.5 (cont'd)
DEC N; LDTMA; DB-'S0P™2
INC xi; SETMR; BNE L70P3
L] FAOL TR, OPv:-h,, MOL 75.x; SETAG

FAUL; DEC XS

FRUL; 1MC X; SETM&
Dovt-a:crn, FRUL FN,MD
¥

"y
LOOP4: FMUL DPY(-3),MD
' FADD FN,DPX(-3); INC X; SETMA
FADD; FMUL; DEC NS
INC XS; SETMA; MICFA; BNE LOOP4
RE TURN
SEND

. " d
.
R VPG NV O

oW
Fey 3

U8 NP 3

4
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SUBROUT INE WEIBUL
PURPOSE : To generate an array of clutter amplitudes (one for
= each clutter cell of interest) where the spatial
statistics of clutter power are described by a Weibull

distribution and zero correlation.

FORTRAN CALL: Call WEIBUL (S,X,B,NC,A)
S = Address of seed for random number generation
X = Base address of output array
B = Base address of array [B(i)] containing the

median powers from each clutter cell
NC = Number of samples (clutter cells) desired

A = Address of Weibull parameter, a

FORMULA: |
3
X(i) = \/B(i)[(ln af%j)] i=0.1,...,(NC-1)
where [u(i)] is a set of random numbers which are 1
uniformly distributed between 0 and 1.
EXTERNALS: VRANDX, LN, EXP, VSQRT
“ SCRATCH: SP (0-8, 13-15), DPX (-4-3), DPY (-4-3)
N NOTES : The array [B(i)]. which is prestored, must reflect :
;'f the variation of clutter power between different
. 4
‘-% clutter cells. 1
L]
.
3
g
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Table E.6. subroutine WEIBUL

: STITLE WEIBUL
S SENTRY YEIBUL.S
$EXT UQM% LLN,EXP

WOU W, NS
mov K,KS PPV -3)(ND
LosPI 2. De-1.
JSR URANDX

. DEC CONS h
ROV KS,KSS ,
ROV KS.K; SETRA
DEC KS

HOV N5, N
LOOPIDPX()CAD; JSR LN
JSR LM
FRUL DPX(®),DPY(-31; MOV CONS.CONS; SETMA

| FAUL
FNL
DPY (-
f WK(.)(FH JSR EXP
FAUL m(‘ ‘2)
FMUL; INC K;
, FMUL; DEC N .
' v llﬂ”s kS; SETMA; RMICGFN; BNE LooP i
- RETURN
L 3
N
‘-‘.
. Q.'.‘
A
}
a
¢
»
1
&
1
A
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PURPOSE:
FORTRAN CALL:
PARAMETERS :

EXTERNALS:

SCRATCH:

SUBROUT INE QUANT

To truncate detector outputs

Call QUANT (X,Q.N)

X = Base address of input and output
Q = Base address of LJB level

N = Number of inputs

Div

sp (0-4), DPX (-1, 0, 1, 3), DPT (-1, -2)

R

o g e
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Posmlut., DEC N
v,s:m; MICDPY(2); BNE LOOP; DPX(2)CFM

Table E.7. Subroutine QUANT

STITLE QUANT
SENTRY QUANT,3

thXV SETRR
LDTRA;

B+ 'ONE
SEThA

AoV 0,0

DEC v; DPX(-1)<MD

FABS DPX(-1); DPY(@)<TR
FADD; wvumm; DPX(®) <MD
DPY(- u

JSR D

FAUL wx(n.ww-n

LDTNA; DB='NALF

FRUL; DPY(®)<DPX(-1)
FMUL; DPX(17CTA

LOSPI T; DB=27.; DPX(2)<FM

LOOP:FIXT DPX(2)
FADD

DPX(3)CFA; INC X; SETMA
Flgb ZERS,RDPX(3); MOV T,T

FADD

FADD DPX(!).FQ; DPY(®)<MD

FABS DPY(0)

FRUL DPY(1),FA; FSUB DPX(-1),ZERO
FMUL DPX(0),FA; FADD

FWUL; DPX(- i1cbpveo)

wv(amrn, SFGT POS

rsule PPYi2),ZERO

#DD
W(Z)(i‘ﬂ
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